Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of figures

< >
[Figure 111]
[Figure 112]
[Figure 113]
[Figure 114]
[Figure 115]
[Figure 116]
[Figure 117]
[Figure 118]
[Figure 119]
[Figure 120]
[Figure 121]
[Figure 122]
[Figure 123]
[Figure 124]
[Figure 125]
[Figure 126]
[Figure 127]
[Figure 128]
[Figure 129]
[Figure 130]
[Figure 131]
[Figure 132]
[Figure 133]
[Figure 134]
[Figure 135]
[Figure 136]
[Figure 137]
[Figure 138]
[Figure 139]
[Figure 140]
< >
page |< < (78) of 458 > >|
11678Apollonij Pergæi
MONITVM.
ANtequam huius Decimætertiæ Sectionis explicationes, atque
emendationes aggrediamur, vt Notæ breuiores, clarioreſque
reddentatur, &
teſtus Arabici menda facilius corrigi poſſent, operæ
pretium duximus (amice lector) Lemmata ſequentia præmittere.
LEMMA IX.
Si ad coniſectionem, atque ad vnum quadrantem ellipſis A B C à
concurſu D nullus ramus duci poſsit, qui ſit breuiſecans;
Dico, quod
quilibet ſecans ramus D B cum tangente H B G per eius terminum B
ducta efficit angulum D B H ad partes verticis A acutum, &
D B
G, qui deinceps eſt, obtuſum.
Quoniam nullus ramus ex concurſu
98[Figure 98] D ad ſectionem A C ductus eſt breui-
ſecans, erit (ex conuerſa propoſitionis
49.
50. 51. 52. huius) menſura A E
aut non maior ſemiſſe lateris recti, aut
perpendicularis D E maior Trutina,
quæ ſit F, &
ideo quilibet ramus ſe-
cans D B cadit ſupra breuiſsimam ex
puncto B ad axim ductam, eſt verò
breuiſsima ex puncto B ad axim ducta
perpendicularis ad G B H tangentem
1129. 30.
huius.
ſectionem in B;
ergo angulus D B H,
verticem A reſpiciens eſt acutus, &
qui deinceps eſt D B G erit obtuſus.
LEMMA X.
Iiſdem poſitis, ſi à concurſu D vnicus tantum ramus D B breuiſe-
cans ad ſectionem A B duci poteſt;
Dico, quod quilibet alius ramus
ſecans D 1 ſupra, vel infra breuiſecantem D B poſitus efficit cum recta
L I H tangente ſectionem in I angulum D I L, verticem reſpicien-
tem, acutum, &
D I H, qui deinceps eſt, obtuſum.
Nam ex conuerſa propoſitione 51. & 52. huius perpendicularis D E æqualis
crit Trutinæ F, &
ideo quilibet ramus D I poſitus ſupra, velinſra

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index