Vitruvius, I Dieci Libri dell' Architettvra di M. Vitrvvio, 1556

Table of figures

< >
[111] m p a b x n g e u i h o f l k c r d q s t
[112] a b n e k p b l i q o d f g w c r
[113] c p l k b m i o b a e d f o
[114] d c b e g l n o k m
[115] c b g b d n m l k e a
[116] d f g a e b l c
[117] l h c e k a f g i b
[118] a e b c d f g b a c e d b c d e f g h
[119] a l’occhio nella ſoperficie della terra.b. il Centro della terra.a c la linea del luogo apparente.b c. la linea del uero luogo.a b c. lo angulo della diuerſità. c a b
[120] a b il Deferente.c il ſuo Centro.d e l’Epiciclo.a il ſuo Centro.f. il centro del Mondo.a il Giogo del Deferente.b l’oppoſto.d il Giogo dell Epiciclo.e l’oppoſto. d a e c f b
[121] a b g. il Concentrico.d il ſuo Centro.e z b lo Eccentrico.t il ſuo Centro.K z lo Epiciclo.b. il ſuo Centro.d t. b z. Egualit z. d b. Eguali.d. z paralellogrammo.il moui \\ mento { del Cõcentrico b d a \\ dell’Epiciclo K b z \\ dello Eccẽtrico z te } anguli \\ eguali \\ il Sole ſi uede all’uno, & all’ al-tro modo nel punto z. per la li-nea d. z. E A T D H G Z K B
[122] a b g. lo Eccentico.a il ſuo Centroe il Centro del Mondoa d g. la linea del Giogo.b il Centro del Solee z la linea del mezzano mouimentoparalella alla b d.e b la linea del uero mouimento.b e z l’angulo dello agguagliamento.A b g. il Concentrico a b h d f 2 3 @
[123] d il ſuo Centrot f lo Eccentricoh il ſuo Centroe z lo Epiciclo.g il ſuo Centro.d h. g z. eguali.d z il paralellogrammo.il moui \\ mento{del Cõcètrico a d g. \\ dello Epiciclo e g.z. \\ dell’ Eccétrico fh z. (del giogo e dell’ Eccètrico a d fGil ang uli f h z. e g z. egualiLo Angulo a d g. eguali à gli angolia d ſ. ſ d g. a b d e g 2
[124] h. k. l’Epiciclo’.b. il ſuo Centro.h.il ſuo giogo.n. l’@ ppoſto al giogo.c il Centro del Mondo.K. il punto della prima dimora.@ il punto della ſecon-da.h K o l’arco della ſe-conda.K. n. o l’arco del Re-greſſoh K l’arco della Di@ rettione. H L A B K N O C
[Figure 125]
[Figure 126]
[Figure 127]
[Figure 128]
[Figure 129]
[Figure 130]
[Figure 131]
[132] orizonte eqwnot il poolo
[Figure 133]
[134] A B Il Gnomone diuiſo in noue parti.B T La Linea del piano.E A I L’Orizonte.Q P L’Aſſe del Mondo.B N P Il Meridiano.H G Lacotomus.R C G Monacus, cioè il cerchio de i meſi.N A X F C. Il Raggio Equinottiale.K A T Il Raggio della Bruma.L A R Il Raggio del Solstitio.K O R Il Semidiametro del Solſtitio.L M G Il Semidiametro della Bruma.B T L’ombra Meridiana della Bruma.B C L’ombra Meridiana de l’ Equinottio.B R L’ombra Meridiana del Solſtitio. K e q F u parte della Itate acse o a 9 8 7 6 5 4 3 2 1 b h r mcridi p parte del verno m s lacoto x f g imonaco c linea del. piano t
[135] obelisco gio@ no notte 11 8 ♊ ♋ 14 9 ♉ ♌ 13 10 ♈ ♍ ♓ ♎ ♒ ♏ ♑ ♐ 8 15
[136] b ♋ ♌ ♍ 5 ♎ XI ♏ 6 a ♐ 7 X f 8 IX 9 VIII 10 11 VII d 12 b VI e 1 V 2 IIII 3 III 4 II g ♑ ♋ ♒ 5 ♓ 6 C I ♈ ♉ ♊ l ♋
[Figure 137]
[138] c k a 90 80 o 70 f 60 50 d 45 40 30 20 b 10 9 5 4 c 8 7 6 t 90 80 70 60 l 7 m e 50 l’eguin. 45 40 30 8 7 6 20 4 5 6 7 8 d 9 8 10 9 10 10 9 10 11 11 11 a g f c 12 h 12 i q 1 1 1 2 2 2 3 3 4 e 3 4 5 5 8 7 6 6 4 45 ilpolo k 5 6 n
[139] Hore 8. Min. 34.Hore 12.Hore. 15 Min. 26. l a ♑ ♐ ♒ ♏ g ♓ ♎ h c b ♈ ♍ ♉ ♌ f 60 ♊ ♋ 50 40 30 20 10 k o
[140] ♋ ♌ ♍ ♎ ♏ ♐ 8 7 6 5 4 3 2 1 a e 12 a 11 10 9 8 7 6 5 4 ♊ ♉ ♈ ♓ ♒ ♑
< >
page |< < (101) of 325 > >|
116101TERZO.
Quello che dice Vitr. è, che poſte le baſe, ſopra di eſſe ſi deono porre le colonne, ma con diſſegno, & leggiadria. Delle colonne altre ſono nelle
cantonate, altre ſonotra quelle:
Queste mediane ſi ch@amano da Vit. quelle angulari, uuole Vitr. che le mezane ſiano dritte à piombo nel lo-
ro mezzo collocate, ma quelle de gli anguli ſiano nella parte di dentro piane, &
ſenza raſtremamento, & queſto forſe è ſatto, perche ſcontri-
no con gli anguli del parete della cella, &
dicono queſti oſſeruatori, che rieſcono bene alla uiſta. Similmente raſtremate non ſono quelle, che
ſono appoggiate al parete dirimpeto alle angulari dico da i lati del parete, perche tanto queſte quanto quelle di dentro uia non hanno con-
trattione, ma il loro lato interiore ua dritto à piombo, benche pare che Vit.
per quelle che uanno dalla deſtra, & dalla ſiniſtra nelli lati
del tempio, intenda, che ſi debbia porre ſopra le cantonate due colonne una che ſerua alla ſronte, l’ altra al lato del Tempio, ma queſto non
ſtimo io che ſia, perche le miſure de i uani non ci ſeruerebbono togliendo lo ſpatio di due colonne ad un lato del Tempio.
Poſti i fuſti delle colonne ſeguita la ragione de i capitelli. Queſti ſe ſeranno piumazzati, ſideono ſormar con queſte
Simmetrie, che quanto ſerâ groſſa la colonna da piedi aggiuntaui una dieciottaua parte del fuſto da baſſo, tanto ſia
1110 longo, &
largo l’Abaco, ò Dado che ſi dica, ma la groſſezza di quelli cõ la Voluta ſia per la metà, douemo poi retirarſi
dall’ eſtremità del Dado nella parte di dentro per far le fronti delle Volute due, &
mezza di quelle parti, & lõgo il da-
do da tutte quattro le parti delle Volute appreſſo la quadra dell’eſtremità del dado mandar in giu le linee, che Catheti
dette ſono, &
quella groſſezza del Capitello gia preſa diuidere in noue parti e mezza, una parte e mezza ſia data alla
groſſezza del dado, &
dell’ altre otto faccianſi le Volute. Dapoi dalla linea, che longo l’ eſtremità dell’ A baco, o Da-
do, all’ingiù ſerà mandata, egli ſi deue ritirare, per una parte e mezza in dentro, &
mandarne giu un’ altra, indi
partite ſiano queſte linee in modo, che quattro parti e mezza laſciate ſiano ſotto il Dado, alhora in quel luogo, che
diuide quattro e mezza, &
tre e mezza, ſegnato ſia il centro dell’occhio, & ſu quel centro in giro tirata ſia una cir-
conferenza tanto grande in Diametro, quanto è una delle otto parti, quella ſerà per la grandezza dell’ occhio.
& in
quella ſia tirato un Diametro, che riſponda al Catheto, poi dal di ſopra ſotto il dado minuito ſia mezzo ſpacio del-
2220 l’occhio cominciato in ciaſcuno giro delle quarte, ſin che ſi peruenga ſotto l’iſteſſa quarta, che è ſotto’l Dado, la
groſſezza del Capitello coſi farſi deue, che di noue parti è mezza tre parti inanzi pendino ſotto il Tondino della
ſommità della colonna, &
aggiontoui alla gola il reſtante ſi dia al Dado, & al Canale, lo ſporto della gola ſia oltra la
quarta del Dado per la grandezza dell’occhio.
Sotto il tondino, ouero Aſtragalo, che ſi dica tre parti delle noue e mezza ſi diano, il reſtante delle noue è mezza che ſono ſei, & mezza ſi
da al Dado al Canale, &
alla Gola, ò Cimaſa, ma dell’ Abaco ſe ne è detto però dice Vit. adempto Abaco, cioè leuatone l’Abaco, del qual hauemo
detto, che ſe gli da una parte e mezza, il reſto ſi da al Canale, &
alla Cimaſa del Dado, e ponendoui il Dado in quel conto, ſtanno bene, &
non ſi deono mutare, come uogliono alcuni dicendo, adempto Abaco, ma addito Abaco, ſei parti &
mezza adunque ſi comparteno al Dado,
al Canale, &
alla Cimaſa, una & mezza ſe ne da al Dado, una allo Aſtragalo, e Tondino, che tanto quanto la grandezza dell’ occhio, le al-
tre quattroſi danno alla Cimaſa, &
al Canale, itermini del Canale ſono dimoſtrati dal primo giro della Voluta, lo ſporto della Cimaſa ò Go-
3330 la è oltra il quadro del dado per la grandezza dell’ occhio.
Le Cinte de i piumazzi habbiano del Dado queſto ſporto, che poſto un piede della ſeſtanel tetrante del Capitello, &
allargato l’altro alla eſtremità della Cimaſa raggirandoſi tocchi l’eſtreme parti delle cinte.
Queſta è la terza conditione, che proua, che noi hauemo ſatto bene il Capitello, & di ſopra noi l’ hauemo ben dimoſtrata, & queſto è un de
bei pasſi di Vitr.
ilqual non ci laſſa deſiderio d’ alcuna coſa, & però ſeguitando dice.
Gliasſi delle Volute eſſer non deono piu grosſi della grandezza dell’ occhio, & le Volute ſiano tagliate in modo, che le
altezze habbiano la duodecima parte della loro larghezza.
Queſte ſeranno le Simmetrie de i capitelli di quelle Co-
lonne, che per la meno ſeranno di piedi quindeci, &
quelle altre, che ſeranno di piu teneranno allo iſteſſo modo la
conuenienza delle lor miſure:
Il Dado ſera lungo, & largo quanto è groſſa la colonna da baſſo, aggiuntoui la nona
parte, accioche quanto meno la Colonna piu alta hauerà di raſtremamento non meno di quelle il Capitello habbia
4440 lo ſporto della ſua Simmetria, &
nell’altezza l’ aggiunta della rata parte. Ma delle deſcrittioni delle Volute come
drittamente à ſeſta ſi uoltino, come s’habbiano à diſſegnare, nel fine del libro la forma, &
la ragione ci ſarà dipinta
e dimoſttata.
Aſſe chiama egli quella parte, che è dalla groſſezza dell’ occhio occupata, come ſe egli fuſſe un bastone, che paſſaſſe per lo mezzo del piumazzo, et
ſopra eſſo ſi rauolge, ſi come aſſe è quella linea, che da polo à polo trappaſſando per lo cètro ſi stende.
Queſte ſono le miſure di que capitelli, che
uanno ſopra colonne alte quindeci piedi.
Ma ſe ſuſſero piu alte ſeranno alli capitelli loro date le isteſſe miſure, ueròè, che il Dado ſera largo,
&
longo di piu della groſſezza della colonna per la nona parte, perche eſſendo la colonna maggiore, meno ſirastrema di ſopra, perche lo ae-
re per la lontananza fa lo effetto.
Forniti i capitelli, & poi poſti ne i ſommi fuſti delle colonne non à dritto liuello, ma ſegondo egual modulo, accioche
quella aggiunta che ne i piedeſtalli ſerà ſtata ſatta riſponda ne i membri di ſopra con la ragioneuole miſura de gli ar
5550chitraui.
Voleua (come hauemo ueduto di ſopra) Vit. che i Piedeſtalli uſciſſero oltra il Poggio, ma però che di tutti i membrelli del Piedeſtallo riſpondeſ-
ſero i membrelli del poggio che piu adentro ſi ritiraua, ilche conſiderando egli auuertiti cirende, che poniamo i capitelli di modo, che riſpondi
no cõ le riſalite loro à quelle giunte da baſſo, accioche nell’architraue corriſpondino i membri con la loro ragioneuole miſura alle parti diſotto
come per la ſigura dello impiè del Tempio Pſeudodipteros ſi dimoſtra.
Egli ſi deue in queſto modo pigliar la ragione de gli archi-
traui che ſe le colõone ſerãno almeno da dodici ſin quindici piedi l’altezza dello Architraue ſia per la metà della groſ-
ſezzadella colõna da piede.
Se paſſerà da quindici à uenti partita l’ altezza della colõna in parti tredici per una di eſſe
ſerà l’altezza dello Architraue.
Se piu oltre da uenti à uenticinque uſcirà la colonna, diuidaſi l’altezza ſua in parti do
dici, e mezza, &
diuna parte di quelle ſia ſatto l’Architraue nell’altezza ſua. Se ſerà da uenticinque à trenta di dodici
parti della colõna una ſia per l’altezza dello Architraue, &
oltra di queſto ſecõdo la rata parte allo iſteſſo modo dalla
6660 altezza delle colonne deono eſſer ſpedite le altezze de gli Architraui, perche quanto piu aſcende l’acutezza della ui
ſta non facilmente taglia, &
rompe la denſità dello aere, & però debilitata, & conſumata per lo ſpatio dell’altezza,
riporta à noſtri ſenſi dubioſamente la grandezza delle miſure, per il che ſempre ne i membri delle Simmetrie aggin-
gner ſi deue il ſupplemento della ragione, accioche quando l’opre ſeranno in luoghi alti, ouero haueranno i membri
grandi, &
alti, tutte l’altre parti habbiano la ragione delle grandezze. La larghezza dello Architraue dal baſſo in
quella parte, che egli ſi poſa ſopra il capitello ſerà tanto quanto la groſſezza di ſopra della colonna, che ſotto giace
al capitello, ma la parte di ſopra dello Architraue ſia quanto ſerà la groſſezza del piede della colonna, la gola detta
Cimaſa dello Architraue ſia per la ſettima parte della ſua altezza, &
tanto habbia di ſporto, l’ altra parte oltra la det
ta Cimaſa diuider ſi deue in parti dodici, &
di tre di eſſe facciaſi la prima faſcia, la ſeconda di quattro, & la terza diſo
pra di cinque, il ſregio ſopra l’ Architraue la quarta parte meno dello Architraue.
Ma ſe hauerai à ſcolpirgli ſigurette
7770 e ſegni, alhora farai il fregio ſia per la quarta parte piu alto dell’Architraue, accioche le ſcolture habbiano del grande.
La gola ò Cimaſa del ſregio ſia per la ſettima della altezza di eſſo, lo ſporto quanto è la ſua groſſezza. Sopra il
ſregio deneſi ſare il Dentello tanto alto, quanto è la ſaſcia di mezzo dello Architraue, lo ſporto quanto l’altezza,
lo ſpacio, che è tra Dentello, &
Dentello detto Metochi da Greci, in queſto modo ſi deue diuidere, che il Dentello
habbia nella ſronte mezza parte dell’ altezza ſua, il cauo della interſecatione di quella ſronte di tre, due parti
habbia della larghezza, la gola di queſto habbia la ſeſta parte dell’ altezza di quello, il gocciolatoio detto

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index