Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of figures

< >
[Figure 161]
[Figure 162]
[Figure 163]
[Figure 164]
[Figure 165]
[Figure 166]
[Figure 167]
[Figure 168]
[Figure 169]
[Figure 170]
[Figure 171]
[Figure 172]
[Figure 173]
[Figure 174]
[Figure 175]
[Figure 176]
[Figure 177]
[Figure 178]
[Figure 179]
[Figure 180]
[Figure 181]
[Figure 182]
[Figure 183]
[Figure 184]
[Figure 185]
[Figure 186]
[Figure 187]
[Figure 188]
[Figure 189]
[Figure 190]
< >
page |< < (104) of 458 > >|
142104104 Apollonij Pergæi nem: Dico, quod circumpherentia Z γ ſecat tangentem rectam lineam
x A, &
coniſectionem B G in puncto A.
Quoniam perpendicularis D E ponitur ma-
127[Figure 127] ior trutina L;
ergo quilibet ramus D A cadit
1151. 52.
huius.
ſupra breuiſsimam ex puncto A ad axim B E
ductam:
efficit vero breuiſsima cum tangente
A x angulum rectum;
ergo angulus D A x eſt
2229. 30.
huius.
acutus;
& propterea recta A x cadit intracir-
culum A Z;
ſed A x cadit extra coniſectio-
3335. 36.
Lib. 1.
nem B A, quàm contingit;
ergo circumferen-
tia Z A cadit extra ſectionem B A, &
extra
tangentem A x:
poſtea ducatur quilibet ramus
D G infra ramum D A ſecans circumferentiã
circuli in r:
& quia ramus D A propinquior
eſt vertici B, quàm D G, erit D A minor,
4464. 65.
huius.
quàm D G;
eſtque D γ æqualis D A (cum ſint ambo radij eiuſdem circuli) ergo
D γ minor erit, quàm D G:
& propterea quodlibet punctum γ peripheriæ cir-
cularis infra punctum A poſitum cadet intra coniſectionem B G;
& ideo cir-
cumferentia Z A γ ſecat tangentẽ, &
coniſectionẽ in A, quod erat propoſitum.
Iſdem poſitis, ſit perpendicularis D E æqualis Trutinæ L, & ſit D
55PR. 10.
Addit.
A ſingularis ille ramus breuiſecans, qui ex concurſu D ad ſectionem
B G duci poteſt;
perficiaturque conſtructio, vt antea factum eſt; Dico,
6651. 52.
huius.
circulum Z A γ ſecare coniſectionem in A, &
contingere rectam Ax.
Ducatur quilibet ramus D F ſupra breuiſe-
128[Figure 128] cantem D A, ſecans circuli peripheriam in Z,
&
quilibet alius ramus D G infra D A ſecans
eandem peripheriam in γ.
Et quia ex con-
curſu D ad ſectionem B G vnicus tantum bre-
77Ibidem. uiſecans D A duci poteſt;
igitur ramus D F
propinquior vertici B minor eſt remotiore D
8867. huius. A, &
D A propinquior vertici B minor eſt
remotiore D G:
ſuntque rectæ D Z, D γ æ-
quales eidem D A (cum ſint radij eiuſdem,
circuli) ergo D Z maior eſt, quàm D F, &

D γ minor, quàm D G;
& propterea quodli-
bet punctum Z circuli ſupra A ſumptum ca-
dit extra coniſectionem B F A, &
quodlibet
infimum punctum γ eiuſdem circuli cadit intra eandem coniſectionem A G;
quapropter circumferentia circuli Z A γ ſecat coniſectionem B A G in A. Po-
ſtea quia recta A x contingens ſectionem in A perpendicularis eſt ad breuiſe-
cantem D A, cum I A ſit breuiſsima;
igitur recta linea x A, quæ perpendicu-
9929. 30.
huius.
laris eſt ad radium D A, continget circulum Z Y γ.
Quapropter circulus Z
A γ ſecant coniſectionem B A G in A, &
tangit eandem rectam lineam A x,
quàm contingit ſectio conica B A G, &
in eodem puncto A, quod erat oſtendendũ.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index