Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of figures

< >
[Figure 201]
[Figure 202]
[Figure 203]
[Figure 204]
[Figure 205]
[Figure 206]
[Figure 207]
[Figure 208]
[Figure 209]
[Figure 210]
[Figure 211]
[Figure 212]
[Figure 213]
[Figure 214]
[Figure 215]
[Figure 216]
[Figure 217]
[Figure 218]
[Figure 219]
[Figure 220]
[Figure 221]
[Figure 222]
[Figure 223]
[Figure 224]
[Figure 225]
[Figure 226]
[Figure 227]
[Figure 228]
[Figure 229]
[Figure 230]
< >
page |< < (125) of 458 > >|
163125Conicor. Lib. V. P D; ergo B E ſemiſsis erecti ad B D ſemiſsim tranſuerſi eſt, vt N P ad
P D, &
ideo N H eſt breuiſsima linearum egredientium ex N (10.
ex 5.) & fic oſtendetur, quod ſi K I fuerit maximus, erit K M breuiſſima.
PROPOSITIO XXXIII. XXXIV.
EContra oſtendetur, quod duæ breuiſſimæ, ſi producantur
11a ad partes ſuarum originum vſque ad axim minorem rectũ
ellipſis, fient duo maximi;
& lineæ maximæ mutuò ſe ſecant in-
ter tranſuerſum, &
rectum in eadem parte, & quod continent
cum menſura angulos, quorum proximior vertici ſectiouis ma-
ior eſt.
Quia D Q ad Q I eſt, vt D O ad O G, quia quælibet earum eſt, vt
22b D A ad A F (22.
ex 5.) diuidendo, & permutando, fiet D Q minor ad
D O maiorem, vt D I ad D G;
ergo D I minor eſt, quàm D G, & K Q
maior, quàm H O;
quare angulus I maior eſt, quàm G; igitur H G, K I,
ſe mutuo ſecantes, conueniunt in L.
Et conſtat, quod occurſus duarum breuiſsimarum (ſi producantur ver-
ſus ſuam originem) erit intra angulum contentum à duabus medietati-
bus axium ellipſis B D, D C ſupra vnum eorum, nempe punctum L ca-
dit intra angulum B D C.
Quoniam breuiſsimæ N H, M K ſe mutuò ſe-
cant, ſi producantur ad partes ſuæ originis (28.
ex 5.) occurrent vtique
extra B D, &
intra A G (33. ex 5.) & hoc erat oſtendendum.
PROPOSITIO XXXV.
SI per centrũ ellipfis tranſierit vna
33a157[Figure 157] duarum breuiſſimarum, vtique
rami egrediẽtes ab eorum occurſu ad
ſectionis quadrantem alterius breuiſſi-
mæ habebunt proprietates expoſitas
in propoſitionibus 54.
& 55.
In ellipſi A B C ſit punctum E occur-
ſus duarum breuiſſimarum B D, C I, &

centrum ſectionis D:
& ex E educamus E F, quæ ſecet tranſuerſum a-
xim in H.
Dico, quod H F nõ eſt breuiſſima, & quod breuiſſima egre-
diens ex F abſcindit ex ſagitta A C cum A lineam maiorem, quàm A
H.
Quoniam G I eſt breuiſſima; igitur F H, ſi eſſet quoque breuiſſima,
4434. Huius. occurreret ipſi G I intra angulum A D E:
ſed non occurrit ei, niſi in E,
ergo F H non eſt breuiſſima;
& quia F E non cadit inter duas breuiſe-
cantes E B, E G;
ergo breuiſſima, egrediens ex F, abſcindit ex ſagitta
lineam maiorem, quàm A H (54.
ex 5.) quod erat oſtenden@um.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index