Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of figures

< >
[Figure 251]
[Figure 252]
[Figure 253]
[Figure 254]
[Figure 255]
[Figure 256]
[Figure 257]
[Figure 258]
[Figure 259]
[Figure 260]
[Figure 261]
[Figure 262]
[Figure 263]
[Figure 264]
[Figure 265]
[Figure 266]
[Figure 267]
[Figure 268]
[Figure 269]
[Figure 270]
[Figure 271]
[Figure 272]
[Figure 273]
[Figure 274]
[275] Cc 2
[Figure 276]
[Figure 277]
[Figure 278]
[Figure 279]
[Figure 280]
< >
page |< < (131) of 458 > >|
169131Conicor. Lib. V. breuiſsimæ B D, GI, quarum B D per centrũ
167[Figure 167] tranſit, quæ productæ concurrunt in puncto E
axis minoris, &
concluditur, quodrami E F,
portio F H, nedũ breuiſsima non eſt, ſed ſupra
ipſam breuiſsimã ex puncto F eductam cadit.
Sed duo hic notanda ſunt. Primo, quod hæc
prop.
35. non poterat poſtponi, nã vſum habet
in 57.
huius vbi malè citatur prop. 52. loco hu-
ius 35.
, vt ibidem inſinuatum eſt. Secundo,
quod hæc demonſtratio non videtur omnino
perſecta nam pendet ex prop.
34. , & ex eius
conuerſa, quæ demonſtrata non reperitur qua-
re ſuperuacanea non fuit noua demonſtratio in
Lemmat.
8. appoſita.
Notæ in Prop. XXXVI.
SI verò nulla earum tranſit per centrũ,
11a educamus D O, &
c. Si enim fuerint
quatuor lineæ breuiſſimæ G K, F I, H L, M
N, quarum nulla per centrum D tranſit, ſi-
militer oſtendetur, quod non conueniunt in
vno puncto E;
nam ducto ſemiaxe minori
D O neceſſe eſt, vt punctum E concurſus duorũ
breuiſecantiũ E G, E F cadat intra angulũ A
D O;
pariterque idem punctum E concurſus
2234. huius.
Ibidem.
duorum breuiſec antium E H, E M, cadet ne-
ceſſario intra angulum C D O, ſed idem pun-
ctum E nequit duobus in locis reperiri, ni-
mirũ intra angulum A D O, &
intra angu-
lum C D O, igitur non poſſunt ab eodẽ puncto
educi ad ellipſim quatuor rami breuiſecantes.
Notæ in Prop. XXXVIII.
NAm ſi educamus B G tangentem erit
33a4432. huius. B D minor quàm D H, &
c. Quo-
niam C B eſt linea breuiſſima, aut ſi maxima
5529. 30.
huius.
eſt, eius portio erit breuiſſima, &
G B cõtin-
gens ſectionem in eius termino B perpendicu-
laris ad B C;
propterea in triangulo B D H
latus H D, ſubtendens angulum rectum B,
maius erit latere D B;
eſt verò D E maior,
quàm D H, eo quod punctum H contingentis
B G cadit extra ſectionem;
igitur linea B D
minor eſt, quàm D E, &
propterea angulus
D E B acutus erit, quare eſt minor

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index