172134Apollonij Pergæi
VIII.
CONI SIMILES ſunt, quorum axes æquè ad baſes inclinati,
ad diametros baſium proportionales ſunt.
ad diametros baſium proportionales ſunt.
IX.
Et dicitur conus continere ſectionem, &
ſectio in cono po-
ſita eſse, ſi ſectio tota fuerit in ſuperſicie coni, aut cadat in illa,
ſi producatur ex parte baſis.
ſita eſse, ſi ſectio tota fuerit in ſuperſicie coni, aut cadat in illa,
ſi producatur ex parte baſis.
NOTÆ.
DEſinitiones huius ſeſti libri ferè omnes ſunt Appollonij, in paucis quidem
alteratæ ab interprete Arabico: quod quidem conſtat teſtimonio Eutocij
Aſcalonitæ, qui in tertiam propoſitionem ſecundi æquiponder antium Archime-
dis affert definitionem ſimilium portionum conicarum ſectionum, traditam ab
Apollonio in eius ſeſto libro: & ſanè ordo doctrinæ exigebat, vt prius ſectio-
nes æquales, & ſimiles definirentur, vt poſtea earum symptomata demonſtrari
poſſent: ſed animaduertendum eſt, hactenus nomen ſectionis conicæ ſignificaſſe
quamlibet indeterminatam portionem curuæ lineæ in coni ſuper ſicie ortam ex ſe-
ctione alicuius plani non per verticem coni ducti, non conſiderando termiuos eius
neque menſuram. Segmentum verò ſignificat portionem aliquam ſectionis conicæ
determinatæ menſuræ, & certis finibus terminatam; at multoties ſignificat ſu-
perficiem à coniſectione, & recta linea eam ſubtendente contenta. Igitur ad
confuſionem vitandam vocabo huiuſmodi ſuperficiem planam, Mixtam ſuperficiẽ
ſectionis conicæ. Modò in relatis definitionibus prius quænam coniſectiones vo-
cari debeant inter ſe æquales exponit Apollonius.
alteratæ ab interprete Arabico: quod quidem conſtat teſtimonio Eutocij
Aſcalonitæ, qui in tertiam propoſitionem ſecundi æquiponder antium Archime-
dis affert definitionem ſimilium portionum conicarum ſectionum, traditam ab
Apollonio in eius ſeſto libro: & ſanè ordo doctrinæ exigebat, vt prius ſectio-
nes æquales, & ſimiles definirentur, vt poſtea earum symptomata demonſtrari
poſſent: ſed animaduertendum eſt, hactenus nomen ſectionis conicæ ſignificaſſe
quamlibet indeterminatam portionem curuæ lineæ in coni ſuper ſicie ortam ex ſe-
ctione alicuius plani non per verticem coni ducti, non conſiderando termiuos eius
neque menſuram. Segmentum verò ſignificat portionem aliquam ſectionis conicæ
determinatæ menſuræ, & certis finibus terminatam; at multoties ſignificat ſu-
perficiem à coniſectione, & recta linea eam ſubtendente contenta. Igitur ad
confuſionem vitandam vocabo huiuſmodi ſuperficiem planam, Mixtam ſuperficiẽ
ſectionis conicæ. Modò in relatis definitionibus prius quænam coniſectiones vo-
cari debeant inter ſe æquales exponit Apollonius.
I.
Et primo;
Si fuerint duæ quælibet coni-
170[Figure 170] ſectiones B A C, E D F, quarum axes A G,
D H; vertices verò A, & D, & ſiquidem
intelligatur ſectio B A C ſuperpoſita ſectioni
E D F, vt nimirum vertex A ſuper verti-
cem D cadat, atque axis A G ſuper axim
D H, atque pariter peripheriæ B A C, & E
D F ſibi mutuò congruant: tunc quidem vo-
cantur duæ dictæ ſectiones conicæ æquales in-
ter ſe. V bi notandum eſt, non oportere lon-
gitudinem curuæ B A C æqualem eſſe longi-
tudini curuæ E D F; ſicuti, vt duo anguli
rectilinei dicantur æquales, & ſibi mu-
tuò congruentes, neceſſe non eſt, vt rectæ li-
neæ, angulos continentes, ſint æquales longi-
tudine, dummodo certum ſit, quod lineæ ipſæ
vlterius productæ ſemper ſibi mutuò congruant; ſic pariter peripheriæ conicarũ
ſectionum A B, & D E, ſi vlterius producantur, ſemper ſibi mutuò congruent.
170[Figure 170] ſectiones B A C, E D F, quarum axes A G,
D H; vertices verò A, & D, & ſiquidem
intelligatur ſectio B A C ſuperpoſita ſectioni
E D F, vt nimirum vertex A ſuper verti-
cem D cadat, atque axis A G ſuper axim
D H, atque pariter peripheriæ B A C, & E
D F ſibi mutuò congruant: tunc quidem vo-
cantur duæ dictæ ſectiones conicæ æquales in-
ter ſe. V bi notandum eſt, non oportere lon-
gitudinem curuæ B A C æqualem eſſe longi-
tudini curuæ E D F; ſicuti, vt duo anguli
rectilinei dicantur æquales, & ſibi mu-
tuò congruentes, neceſſe non eſt, vt rectæ li-
neæ, angulos continentes, ſint æquales longi-
tudine, dummodo certum ſit, quod lineæ ipſæ
vlterius productæ ſemper ſibi mutuò congruant; ſic pariter peripheriæ conicarũ
ſectionum A B, & D E, ſi vlterius producantur, ſemper ſibi mutuò congruent.