Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of figures

< >
[Figure 151]
[Figure 152]
[Figure 153]
[Figure 154]
[Figure 155]
[Figure 156]
[Figure 157]
[Figure 158]
[Figure 159]
[Figure 160]
[Figure 161]
[Figure 162]
[Figure 163]
[Figure 164]
[Figure 165]
[Figure 166]
[Figure 167]
[Figure 168]
[Figure 169]
[Figure 170]
[Figure 171]
[Figure 172]
[Figure 173]
[Figure 174]
[Figure 175]
[Figure 176]
[Figure 177]
[Figure 178]
[Figure 179]
[Figure 180]
< >
page |< < (142) of 458 > >|
180142Apollonij Pergæi niam, ſuperpoſita axi C H ſuper axim A G,
&
c. vt in textu habetur. Si enim axis C H
183[Figure 183] ſuper axim A G applicatur, ita vt vertices A,
C coincidant, neceſſariò ſectio C D cadet ſu-
per ſectionem A B alias aſſignari poſſet pun-
ctum eius D, extra ſectionem A B cadens.
Præterea ponamus duas ſectiones æqua-
11c les, &
C F æqualis A E, & c. Textum cor-
ruptum ſic reſtituendum cenſeo.
Præterea ſup-
ponamus, duas illas ſectiones æquales eſſe in-
ter ſe, &
fiat C F æqualis A E, educamus ad
axes perpendiculares B E, D F, &
c. Sic enim
diſtinguitur hypotheſis propoſitionis à conſtru-
ctione eius.
Ergo ſectio A B cadit ſuper ſectionem.
22d C D, & A E ſuper C F: alioqui eſſent ſe-
ctioni parabolicæ duo axes;
ergo F cadit
ſuper E, &
c. Quoniam (ex hypotheſi) ſectio-
nes A B, &
C D æquales ſunt, facta intellectuali conuenienti ſuperpoſitione, ſi-
bi mutuò congruent, &
vertex A cadet ſuper verticcm C. Dico iam, axim A
E cadere ſuper axim C F:
alioquin in eadem parabola, ſcilicet in duabus pa-
rabolis ſibi congruentibus à communi vertice C, vel A, duo axes A E, &
C F
ducerentur:
quod eſt impoſſibile. Quare axis A E cadit ſuper axim C F.
Notæ in Propoſit. II.
SI fuerint figuræ duarum ſectionem hyperbolicarum, aut duarum elli-
33a pſium, vt duo plana G I, H K in A B, D E ſimiles, &
æquales;
vtique duæ ſectiones æquales erunt: ſi vero duæ ſectiones ſint æquales
earum figuræ erunt æquales, ſimiles, &
c. In duabus ſectionibus A B, &
D E ſumi debent figuræ G I, &
H K, non qualeſcunque, ſed illæ, quæ ad axes
fiunt, nimirum debent eſſe G A, &
H D axes inclinati, ſeu tranſuerſi, & A
I, atque D K eorum latera recta;
tunc quidem, ſi figuræ axium G I, H K fue-
rint ſimiles, &
æquales, conicæ ſectiones B A, D E æquales quoque oſtenduntur
in propoſitione.
Quod verò particula illa (axium) deſideretur in textu propo-
ſitionis, conſtat ex primis verbis immediatè ſequentis conſtructionis.
Inquit
enim.
Quoniam ſi ponamus axim A M ſuper axim D O, & c.
Cumque G I, H K ſint duæ figuræ ſimiles, & æquales, pariterque
44b I P, K R;
ergo duo plana A P, D R ſunt æqualia, & c. Quia rectangula
I P, G I circa communcm diametrum G I P conſiſtunt, erunt inter ſe ſimilia:
pariterque K R ſimile erit rectangulo K H: quare duo rectangula I P, & K R
ſimilia ſunt duobus rectangulis G I, H K inter ſe ſimilibus;
& ideo illa inter
ſe quoque ſimilia erunt, &
habent latera homologa æqualia, illa nimirum, quæ
opponuntur æqualibus abciſsis A L, &
D N, igitur rectangula P I, & R

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index