Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

List of thumbnails

< >
111
111 (73)
112
112 (74)
113
113 (75)
114
114 (76)
115
115 (77)
116
116 (78)
117
117 (79)
118
118 (80)
119
119 (81)
120
120 (82)
< >
page |< < (151) of 458 > >|
189151Conicor. Lib. VI.
In ſestione A B C ducatur ramus breuiſe-
202[Figure 202] cans ſingularis I L ſecans axem in G, ſitque
1151. 52. 53.
lib. 5,
I punctum concur ſus perpendicularis I K, &

breuiſecantis;
& à quolibet puncto B inter
L, &
verticem A ducatur alius ramus bre-
uiſecans B M, qui occurret L I vltra axim
in M, &
inter puncta G, & I; coniungatur-
2228. lib. 5.
8. Addir.
lib. 5.
que recta linea B 1.
Quoniam angulus L G A acutus eſt, erit angnlus G M N
internus, &
oppoſitus in triangulo G M N minor illò, & ideo acutus, & pro-
3313. 14. 15.
lib. 5.
pterea qui deinceps eſt angulus B M I erit obtuſus, &
ideo in triangulo I B M
latus I B ſubtendens maximum angulum obtuſum maius erit latera B M;
ſedra-
mus I L maior eſt, quàm I B, propterea quod remotior eſt à vertice A, igitur
4467. lib. 5. ramus I L maior erit, quàm B M:
Secari ergo poterunt æquales rectæ lineæ L R,
B S, quæ ſint minores quidẽ, quàm I L, ſed maiores, quàm M B;
& deſcribantur
duo circuli, quorum radij ſint S B, &
R L æquales, atque centra ſint S, & R;
55Ex 12.
Addit.
lib. 5.
Manifeſtum eſt circulum, cuius radius B S contingere coniſectionem A C in
puncto B, &
extrinſecùs incedere, propterea quod radius B S maior eſt maximo
breuiſecantium M B à concurſu M educto;
è contra circulus radio R L deſcri-
668. Addit.
lib. 5.
Ibidem.
ptus intrinſecùs continget eandem coniſectionem in L cum ramus M L minor ſit
ſingulari breuiſecante L I.
Tandẽ in ſectione D E F ſecetur axis abſcißa D H
æqualis A N, &
in angulo D H P æquali angulo A N B ducatur radius γ H P,
qui fiat æqualis S B, &
cẽtro γ radio verò γ P circulus deſcribatur. Et quia in
ſectionibus æqualibus abſciſſæ, breuiſecantes, anguli ab eis contenti, &
circu-
li deſcripti ſunt æquales, &
congruentes; igitur circulus radio γ P deſcriptus,
contingit coniſectionem D E F extrinſecùs;
ſicuti circulus radij S B tangebat
ſectionem A B C in B extrinſecùs.
Vterat propoſitum.
Hoc demonſtrat o oſtendetur, quod in duabus coniſectionibus A B C,
77PROP. 1.
Addit.
D E F æqualibus, quarum axes A G, D H duæ portiones B C, &

E F non æquè ab axium verticibus remotæ non erunt ſibi congruentes.
Si enim poſſibile eſt B C, & E F ſibi mutuò congruant, & ſumatur interme-
dium punctum commune, vel duo puncta coincidentia L, &
P, & quia portio-
nes B C, E F inæqualiter diſtant à verticibus, ergo puncta coincidentia L, P
non erunt æquè à verticibus remota;
ſit ergo P propinquius vertici D, quàm eſt
L vertici A, &
per L, & P ducantur rectæ
203[Figure 203] lineæ L O, P Q tangentes ſectiones, &
ex lẽ-
8833. 34.
lib. 1.
matæ præcedenti deſcribantur duo circuli æ-
quales Z P T, &
V L X radijs I L & S
P, quorum Z T extrinſecus tangat ſectionẽ
in P, &
V X intrinſecus in L, cumque eo-
rum radij I L, S P ſint breuiſecantes, erunt
perpendiculares ad L O, P Q contingentes
9929. 30.
lib. 5.
ſectionem in L, &
P; atque portiones B C, E F ſibi mutuò congruunt, ideſt
101035. 36.
lib. 1.
conſtituunt vnicam communem peripheriam, ergo rectæ lineæ L O, P Q
contingentes eandem ſectionem ſibi mutuò congruent, pariterque breuiſe-
cantes æquales L I, P M ad illas perpendiculariter inſiſtentes crunt congruentes
quoque;
& propterea circuli V X, Z T ab ijs radijs geniti erunt quoque

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index