Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of contents

< >
[71.] Demonſtratio ſecundæ partis. PROPOSITIONIS LI.
[72.] Notæ in Propoſ. LII. LIII.
[73.] Secunda pars buius propoſitionis, quam Apollonius non expoſuit hac ratione ſuppleri poteſt.
[74.] Notæ in Propoſ. LIV. LV.
[75.] Notæ in Propoſit. LVI.
[76.] LEMMA VIII.
[77.] Notæ in Propoſ. LVII.
[78.] SECTIO NONA Continens Propoſ. LVIII. LIX. LX. LXI. LXII. & LXIII.
[79.] PROPOSITIO LVIII.
[80.] PROPOSITIO LIX. LXII. & LXIII.
[81.] PROPOSITIO LX.
[82.] PROPOSITIO LXI.
[83.] Notæ in Propoſit. LVIII.
[84.] Notæ in Propoſit. LIX. LXII. & LXIII.
[85.] Notæ in Propoſit. LX.
[86.] Notæ in Propoſit. LXI.
[87.] SECTIO DECIMA Continens Propof. XXXXIV. XXXXV. Apollonij.
[88.] PROPOSITIO XXXXIV.
[89.] PROPOSITIO XXXXV.
[90.] Notæ in Propoſ. XXXXIV.
[91.] Notæ in Propoſ. XLV.
[92.] SECTIO VNDECIMA Continens Propoſ. LXVIII. LXIX. LXX. & LXXI. Apollonij. PROPOSITIO LXVIII. LXIX.
[93.] PROPOSITIO LXX.
[94.] PROPOSITIO LXXI.
[95.] Notæ in Propoſit. LXVIII. LXIX. LXX. & LXXI.
[96.] SECTIO DVODECIMA Continens XXIX. XXX. XXXI. Propoſ. Appollonij.
[97.] Notæ in Propoſit. XXIX. XXX. & XXXI.
[98.] SECTIO DECIMATERTIA Continens Propoſ. LXIV. LXV. LXVI. LXVII. & LXXII. Apollonij. PROPOSITIO LXIV. LXV.
[99.] PROPOSITIO LXVI.
[100.] PROPOSITIO LXVII.
< >
page |< < (152) of 458 > >|
190152Apollonij Pergæi entes; ideoque ſi vnus eorum, nempe Z T extrinſecùs tangit communem portio-
nem conicam B C, reliquus V X extrinſecùs quoque eam langet, ſed ex conſtru-
ctione intrinſecùs ſectionem tangebat, quod eſt abſurdum:
Non ergo duæ por-
tiones B C, &
E F non æquè à verticibus axium remotæ ſibi mutuo congruent-
Quod erat oſtendendum.
Si autem cadit in ellipſi axis A C tranſuerſus ſuper axim rectum illius;
11b vtique excedit illam, & non ſibi mutuò congruunt ſectiones, & quædam
congruunt, &
c. Senſus eſt. Si intelligantur duæ ellipſes, habentes axes tran-
ſuerſos A B, &
G H æquales inier ſe, pariterque
204[Figure 204] axes rectos C D, I K æquales:
& axis A B tran-
ſuerſus vnius ponatur ſuper I K axim rectum al-
terius, ita vt centra ſibi mutuò congruant in E:
tunc quidem, quia axes in ellipſi inæquales ſunt
(alias eſſet circulus) igitur extremitates axis tran-
ſuerſi A B non cadunt ſuper extremitaites axis re-
cti K I, neque G, H cadunt ſuper C, D;
& ideo
circumferentiæ ellipſium ſe ſe mutuò ſecant qua-
tuor in locis, vt in libro 4.
oſtenſnm eſt.
SECTIO TERTIA
Continens Propoſit. V. & VIII.
PROPOSITIO V.
SI per centrum E ellipſis A B, C D tranſeat linea recta A
C vſque ad ſectionem;
vtique bifariam diuidit ſuperſiciem
ſectionis, &
circumferentiam illius, ſcilicet erit ſuperſicies A B
C æqualis ſuperficiei A D C.
Nam ſi A C fuerit axis ſectio-
205[Figure 205] nis, vtique circumferentia A B C
congruet A D C, nam ſi non cõ-
gruit ſignemus locum B, quod al-
teri ſectioni nõ coincidat, &
pro-
ducamus ex illo perpendicularem
B F ſuper A C vſque ad D.
Er-
go B D ordinata eſt ad C A, &

propterea B F ſuperpoſita cõgru-
et ipſi D F, &
cadet B ſuper D,
quia B F æqualis eſt D F (8.
ex
1.)
; ſed non cadebat ſuper illum; quod eſt abſurdum. Igitur

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index