Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of contents

< >
[151.] Notæ in Propoſit. XXXIII. XXXIV.
[152.] Notæ in Propoſit. XXXV.
[153.] Notæ in Prop. XXXVI.
[154.] Notæ in Prop. XXXVIII.
[155.] Notæ in Propoſit. XXXIX.
[156.] Notæ in Propoſit. XXXXVIII.
[157.] LIBRI QVINTI FINIS.
[158.] APOLLONII PERGAEI CONICORVM LIB VI. DEFINITIONES. I.
[159.] II.
[160.] III.
[161.] IV.
[163.] VI.
[164.] VII.
[165.] VIII.
[166.] IX.
[167.] NOTÆ.
[168.] MONITVM.
[169.] SECTIO PRIMA Continens Propoſit. I. II. IV. & X. PROPOSITIO I.
[170.] PROPOSITIO II.
[171.] PROPOSITIO IV.
[172.] PROPOSITIO X.
[173.] Notæ in Propoſit. I.
[174.] Notæ in Propoſit. II.
[175.] Notæ in Propoſit. IV.
[176.] Notæ in Propoſit. X.
[177.] SECTIO SECVNDA Continens Propoſit. III. VI. VII. & IX. PROPOSITIO III.
[178.] PROPOSITIO VI.
[179.] PROPOSITIO VII.
[180.] PROPOSITIO IX.
< >
page |< < (153) of 458 > >|
191153Conicor. Lib. VI. rentia A B C æqualis eſt circumferentiæ A D C, & ſuperficies illius æ-
qualis ſuperficiei.
Iam linea G H tranſiens per centrum ellipſis non ſit axis. Ducamus
ex G, H ſuper axim C A duas perpendiculares G I, H K, quæ pertin-
gant ad L, M.
Et quia ſi ponatur A D C ſuper A B C, congruit G I
ſuper L I (7.
ex 6.) & cadet G ſuper L, quia G I æqualis eſt I L, &
cadit circumferentia C G ſuper circumferentiam C L;
ergo ſuperſicies C
I G æqualis eſt ſuperficiei C I L:
& quia B C D congruit B A D, & ſu-
perficies ſuperficiei, cadet C I ſuper A K, &
L I ſuper K H, & circum-
ferentia C L ſuper circumferentiam A H (quia E I æqualis eſt E K) &

ſuperficies C I L congruit ſuperficiei A K H;
& propterea ſuperficies A
K H æqualis eſt G I C, &
triangulum E G I æquale eſt triangulo E K H;
igitur ſuperficies A E H æqualis eſt ſuperficiei G E C, & circumferentia
A H æqualis eſt circumferentiæ G C, eritque circumferentia C D H, &

ſuperficies eius æqualis A B G, &
ſuperficiei illius. Quare G H tranſiens
per centrum ſectionis A B C D bifariam eam diuidit.
Et hoc erat oſten-
dendum.
PROPOSITIO VIII.
SImiliter conſtat, quod ſi ex quolibet quadrante ellipſis ſe-
centur circumferentiæ, per quarum extremitates rectæ li-
neæ coniunctæ ſint ad eundem axim ordinatim applicatæ, &

æquè à centro remotæ;
vtique ſunt congruentes, & æquales,
nec alicui portioni eiuſdem ſectionis vna illarum æqualis eſt.
Nam demonſtrauimus, quod duæ ſuperficies
11a206[Figure 206] G I C, L I C ſibi congruunt, nec non congru-
unt, duabus ſuperficiebus H A K, M A K (5.
ex 6.) ; & ſi eduxerimus duas ordinationes N
O, P Q, quarum diſtantiæ à centro ſint æqua-
les, ſimili modo oſtendetur, quod ſuperficies
N R C, O R C, A S Q, A S P ſint congruen-
tes (5.
ex 6.) & quod circumferentiæ N C, C
O, A Q, A P ſint congruentes, remanebunt
quatuor ſegmenta G N, L O, H Q, M P con-
gruentia, &
ſuperficies quoque eorum congru-
entes.
Et inſuper dico, quod quodlibet horum
22b ſegmentorum non congruit alicui alio ſegmen-
to;
nam ſequeretur, quod in eadem ellipſi ſint
3348. lib. 2. tres axes, vti dictum eſt, Quare patet propoſitum.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index