Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of contents

< >
[151.] Notæ in Propoſit. XXXIII. XXXIV.
[152.] Notæ in Propoſit. XXXV.
[153.] Notæ in Prop. XXXVI.
[154.] Notæ in Prop. XXXVIII.
[155.] Notæ in Propoſit. XXXIX.
[156.] Notæ in Propoſit. XXXXVIII.
[157.] LIBRI QVINTI FINIS.
[158.] APOLLONII PERGAEI CONICORVM LIB VI. DEFINITIONES. I.
[159.] II.
[160.] III.
[161.] IV.
[163.] VI.
[164.] VII.
[165.] VIII.
[166.] IX.
[167.] NOTÆ.
[168.] MONITVM.
[169.] SECTIO PRIMA Continens Propoſit. I. II. IV. & X. PROPOSITIO I.
[170.] PROPOSITIO II.
[171.] PROPOSITIO IV.
[172.] PROPOSITIO X.
[173.] Notæ in Propoſit. I.
[174.] Notæ in Propoſit. II.
[175.] Notæ in Propoſit. IV.
[176.] Notæ in Propoſit. X.
[177.] SECTIO SECVNDA Continens Propoſit. III. VI. VII. & IX. PROPOSITIO III.
[178.] PROPOSITIO VI.
[179.] PROPOSITIO VII.
[180.] PROPOSITIO IX.
< >
page |< < (180) of 458 > >|
218180Apollonij Pergæi ſarum in vna ſectionum ad homologa abſciſſa alterius eſt eadem ( 12. ex
6.
), & anguli compræhenſi à potentibus, & abſciſſis ſunt æquales; quia
æquales ſunt duobus angulis R A L, S C N æqualibus, &
propterea duo
11Defin. 7.
huius.
ſegmenta ſunt ſimilia.
Poſtea oſtendetur, quod ſi duo ſegmenta fuerint ſimilia, erit
angulus F æqualis E, &
A M ad A E, vt O C ad C F.
Quia propter ſimilitudinem duorum ſegmentorum continebunt poten-
22d tes cum ſuis abſciſſis angulos æquales, &
erit proportio potentium ad ab-
33Defin. 7.
huius.
ſciſſas eadem, &
proportio abſciſſarum, in vna earum ad ſua homologa in
altera, erit eadem.
Et quia V a in a E ad quadratũ a A eandem propor-
243[Figure 243] tionem habet, quàm Y c in c F ad quadratum c C, &
duo anguli a, & c
ſunt recti;
atque angulus C, nempe O æqualis eſt A, nempe M, propter
ſimilitudinem ſegmentorum:
ergo triangulum A E V ſimile eſt C F Y,
&
angulus V æqualis eſt angulo Y; pariterque angulus E æqualis eſt F,
&
A V ad A E eandem proportionem habet, quàm Y C ad C F. Po-
namus iam P A ad duplam A E, vt Q C ad duplam C F;
ergo ex æqua-
litate A T diameter ad A P erectum eius eſt, vt C X diameter ad C Q
erectum eius ( 53.
54. ex I. ) & T M in M A ad quadratum M G eandẽ
4421. lib. I. proportionem habet, quàm X O in O C ad quadratum O I:
at ſuppoſi-
tum eſt quadratum A M ad quadratum M G, vt quadratum C O ad qua-
dratum O I;
ergo ex æqualitate T M in M A ad quadratum A M, nem-
pe T M ad M A, eandem proportionem habet, quàm X O in O C

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index