Vitruvius, I Dieci Libri dell' Architettvra di M. Vitrvvio, 1556

Table of figures

< >
[111] m p a b x n g e u i h o f l k c r d q s t
[112] a b n e k p b l i q o d f g w c r
[113] c p l k b m i o b a e d f o
[114] d c b e g l n o k m
[115] c b g b d n m l k e a
[116] d f g a e b l c
[117] l h c e k a f g i b
[118] a e b c d f g b a c e d b c d e f g h
[119] a l’occhio nella ſoperficie della terra.b. il Centro della terra.a c la linea del luogo apparente.b c. la linea del uero luogo.a b c. lo angulo della diuerſità. c a b
[120] a b il Deferente.c il ſuo Centro.d e l’Epiciclo.a il ſuo Centro.f. il centro del Mondo.a il Giogo del Deferente.b l’oppoſto.d il Giogo dell Epiciclo.e l’oppoſto. d a e c f b
[121] a b g. il Concentrico.d il ſuo Centro.e z b lo Eccentrico.t il ſuo Centro.K z lo Epiciclo.b. il ſuo Centro.d t. b z. Egualit z. d b. Eguali.d. z paralellogrammo.il moui \\ mento { del Cõcentrico b d a \\ dell’Epiciclo K b z \\ dello Eccẽtrico z te } anguli \\ eguali \\ il Sole ſi uede all’uno, & all’ al-tro modo nel punto z. per la li-nea d. z. E A T D H G Z K B
[122] a b g. lo Eccentico.a il ſuo Centroe il Centro del Mondoa d g. la linea del Giogo.b il Centro del Solee z la linea del mezzano mouimentoparalella alla b d.e b la linea del uero mouimento.b e z l’angulo dello agguagliamento.A b g. il Concentrico a b h d f 2 3 @
[123] d il ſuo Centrot f lo Eccentricoh il ſuo Centroe z lo Epiciclo.g il ſuo Centro.d h. g z. eguali.d z il paralellogrammo.il moui \\ mento{del Cõcètrico a d g. \\ dello Epiciclo e g.z. \\ dell’ Eccétrico fh z. (del giogo e dell’ Eccètrico a d fGil ang uli f h z. e g z. egualiLo Angulo a d g. eguali à gli angolia d ſ. ſ d g. a b d e g 2
[124] h. k. l’Epiciclo’.b. il ſuo Centro.h.il ſuo giogo.n. l’@ ppoſto al giogo.c il Centro del Mondo.K. il punto della prima dimora.@ il punto della ſecon-da.h K o l’arco della ſe-conda.K. n. o l’arco del Re-greſſoh K l’arco della Di@ rettione. H L A B K N O C
[Figure 125]
[Figure 126]
[Figure 127]
[Figure 128]
[Figure 129]
[Figure 130]
[Figure 131]
[132] orizonte eqwnot il poolo
[Figure 133]
[134] A B Il Gnomone diuiſo in noue parti.B T La Linea del piano.E A I L’Orizonte.Q P L’Aſſe del Mondo.B N P Il Meridiano.H G Lacotomus.R C G Monacus, cioè il cerchio de i meſi.N A X F C. Il Raggio Equinottiale.K A T Il Raggio della Bruma.L A R Il Raggio del Solstitio.K O R Il Semidiametro del Solſtitio.L M G Il Semidiametro della Bruma.B T L’ombra Meridiana della Bruma.B C L’ombra Meridiana de l’ Equinottio.B R L’ombra Meridiana del Solſtitio. K e q F u parte della Itate acse o a 9 8 7 6 5 4 3 2 1 b h r mcridi p parte del verno m s lacoto x f g imonaco c linea del. piano t
[135] obelisco gio@ no notte 11 8 ♊ ♋ 14 9 ♉ ♌ 13 10 ♈ ♍ ♓ ♎ ♒ ♏ ♑ ♐ 8 15
[136] b ♋ ♌ ♍ 5 ♎ XI ♏ 6 a ♐ 7 X f 8 IX 9 VIII 10 11 VII d 12 b VI e 1 V 2 IIII 3 III 4 II g ♑ ♋ ♒ 5 ♓ 6 C I ♈ ♉ ♊ l ♋
[Figure 137]
[138] c k a 90 80 o 70 f 60 50 d 45 40 30 20 b 10 9 5 4 c 8 7 6 t 90 80 70 60 l 7 m e 50 l’eguin. 45 40 30 8 7 6 20 4 5 6 7 8 d 9 8 10 9 10 10 9 10 11 11 11 a g f c 12 h 12 i q 1 1 1 2 2 2 3 3 4 e 3 4 5 5 8 7 6 6 4 45 ilpolo k 5 6 n
[139] Hore 8. Min. 34.Hore 12.Hore. 15 Min. 26. l a ♑ ♐ ♒ ♏ g ♓ ♎ h c b ♈ ♍ ♉ ♌ f 60 ♊ ♋ 50 40 30 20 10 k o
[140] ♋ ♌ ♍ ♎ ♏ ♐ 8 7 6 5 4 3 2 1 a e 12 a 11 10 9 8 7 6 5 4 ♊ ♉ ♈ ♓ ♒ ♑
< >
page |< < (206) of 325 > >|
225206LIBRO quanto e dal g. all’i, & ſia quello ſpacio b. K. & dallo i. al K. ſi tire una linea ſin al toccamento della linea g d. & ſia iui ſegnato l. & perche
per la 33.
del primo di Euclide la linea a b, e paralella alla linea g i b, & per lo preſuppoſto noſtro le linee g i, & b K. ſono eguali, ne ſegue an-
cho, che la linea b g.
ſia paralella alla linea i l. Oltra di queſto delle linee g c, & h e. ſi leuino due parti eguali alla parte i l. & ſiano qutlle g m.
& h n. & ſiano congiunte inſieme i m. & m n. per la allegata propoſitione paralelle ſeranno g l, & m i, & ſimilmente g h, & m n. Tagli an-
cho la linea m n.
la a d nel punto o, & della linea b K. ſia pre ſo tanto quanto è la m @. & ſia quella parte b p, & dal punto o uer ſo il punto p.
ſia tirata una linea, fin che ella tocchi la linea i m.
nel punto q. ſe adunque la linea m ſera eguale alla o q. egli ſtara bene. Ma ſe la m c. ſer a
minore ne ſegue che la b g, ſera ſtata pr eſa, maggiore di quello, che biſognaua, e pero da capo ſi deue tornare, e tanto eſperimentare, che la
parte o q, ſia eguale alla m c.
Sia adunque m c eguale alla o q. ne ſeguir à per la allegata propoſitione 23. del primo, & per lo preſuppoſto
noſtro che la c o, &
la m q. ſiano paralelle, & ſinalmente (come detto hauemo) nella prima dimoſtratione a b. g i. m o d c. ſi chiameràno le pri
me paralelle, &
a g. m i. c o. le ſeconde. Dico adunque che, g i, & m o, ſono le due di mezzo proportionali, tra la a b, & c d. Fac ciaſi adun
1110 que.
che la a d. & la a b. concorrino nel puntor. ne ſeguira quello, che ancho di ſopra detto hauemo per la ſimiglianza de i triangoli ſecondo
la preallegata propoſitione di Euclide, che nelle prime par alelle, che ſi come è proportionata la a r alla r i.
coſi ſera la b r alla r g. & nelle ſe-
conde paralelle quello riſpetto di comparatione che hauera la ar alla r i coſi ſara la g r.
all’a r m. & ſeguitando ancho ſi come nelle prune ſi
hauera la g r.
alla r m. coſi la i r alla r o, & nelle ſeconde ſi come ſi hauera la i r alla r o. coſi la m r. alla r c. Ne ſegue adunque, che la b r.
r g. m r. m c. ſiano in continua proportione, & ſotto la isteſſa ragione per la quarta del ſeſto ſeranno come la a b, alla g i. la g i. alla m o, et la
m o.
alla c d. propoſte adunque due linee dritte a b, & c d. tra quelle trouato ne hauemo due continue proportionali, che ſono ſtate la g i, &
la m o.
ilche fare uoleuamo. Et con ſimili ragioni potremo ritrouarne quante ci ſera in piacere. Et pero per trouarne due di mczzo pro-
portionali la b f.
ſer a un terzo della b o. parche la b g. è alquanto piu del terzo della b c. & non mai minore, ne eguale alla b f. & per ti ouar
ne tre di mezzo proportionali la b f.
ſera un quarto della b c. et la b g. alquãto maggiore della b f. & per trouarne quattro la b f. ſera un qu n
to della b c.
& la b g. ſera alquanto maggiore della b f. cioe un qumio di eſſa b c. & coſi ſempre la b c. ſera partita in una parte di piu di quel,
2220 che ſono le linee mezzane proportionali, che trouar uorremo, &
ſempre lab f. ſer a una di quelle parti, & la b g. alquanto magg ore ſi pren
dera che la b f.
et però la parte b f. ſi piglia, che tante ſiate à punto ſia della b c. accioche la grandezza della b f. ſi poſſa coniettur are piu preſto.
112[Figure 112]a b n e k p b l i q o d f g w c r
Quanto appartiene ad Archita dico la inuentione eſſer difficile, & la dimoſtra
tione molto ſottile in modo, che à porla in opera, non ſi troua instrumen-
to alcuno ſatto ſecondo quella dimostratione.
Noi con quella facilità, che
ſi può dimoſtreremo tal coſa, i ſond onenti dellaquale ſono diſperſi in molte
propoſitioni di Euclide, lequali é neceſſario hauerle per certe perche trop
po ſarebbe il ſcioglier ogni anello de ſi gran catena.
Date ci ſian due linee
a d.
maggiore, l’altra ſia c. Tra queste biſogna trouarne due di mezzo
3330 proportionali.
Prendiamo adunque la maggiore a d. d’intorno laquale ſi
faccia un circolo di modo, che la ne diuenti il diametro di eſſa, &
ſia il det-
to circolo a b d f.
nel qual circolo per la prima delterzo di Euclide ſi fara
una linea eguale alla linea c.
& ſi quella a b. laquale tanto ſi stenda oltra il
circolo, che tocchi il punto p.
ilquale ſia lo eſtremo d’una linea, & tocchi
il circolo nel punto d.
& ſcende fin al punto o, & ſia tutta p d o, & à que
sta ne ſia tratta una egualmente diſtante, che tagli la linea a d.
nel punto e. intendiſi poi una metà di colonna ritonda, che ſemicilindro ſi chia-
ma, dritto ſopra il ſemicircolo a b d.
& oltra di queſto imaguiamoci nel taglio equidistante, che paralellogrammo è, detto del ſemcilindro ſo-
pra a d.
diſſegnato un ſemicircolo ilquale è come un par alellogrammo del ſemicilindro ad anguli giuſti nel piano del circolo A b d f. Queſto ſe
micircolo girato dal punto d nel punto b, stando fermo il punto a, che è termine del Diametro a d.
nel ſuo girare tagliera quella ſoperficie co-
4440 lonnare, ò cilindrica, &
deſcriuera in eſſa una certa linea, dapoi ſe ſtando ſerma la a d. il triangolo a p d gir ando ſi fara un mouimento contra
rio al ſemicircolo ſenza dubbio eg’i deſcriuera una ſoperficie conica della linea dritta a p.
laquale nel girarſi ſi congiugne in qualche punto di
quella linea, che poco auanti ſu deſcritta mediante il mouimento del ſemicircolo nella ſoperficie del cilindro.
Similmente ancho il b. circonſcri-
uera un ſemicircolo nella ſoperficie del cono.
Et finalmenie il ſemicircolo a d e. habbia il ſuo ſito dapoi che ſera moſſo la doue le linee caden-
do concorrono, &
il triangolo che al contrario ſi moua, habbia queſto ſito d l a. & il punto doue concadono ſia K. ſia ancho per b. deſcritto
un ſemicircolo b m f.
& la doue ſi taglia col circolo b d f a. ſia b f. indi da punto K. à quel piano, che è del ſemicircolo b d a. cada una perpen-
dicolare, certo è che cadera nella cir conferenza del circolo, perche nel piano dello iſteßo circolo fu drizzato il cilindro.
Cada adnnque,
&
ſia K i & quella linea, che uiene dallo i. nello a congiunta ſia con b f. nel punto h. Ma perche luno, & l’altro ſimicircolo cioe il d a, & il
b m f.
è drizzato ſopra il ſottopoſto piano del circolo a b d f. & pero il lor taglio commune m h. sta con anguli giuſti ſopra il piano del circo
lo a b d f.
perilche ancho ſopra eſſa b f. è drizzata la m h. A dunque cio che è contenuto ſotto la b h f. & lo h f. & ſotto lo h a, & lo h i ſi tro-
5550 ua eguale à quello che è ſotto la h m.
Adunque lo angulo a m i, è giuſto, per la conuerſione del corolario della ottaua del ſesto. & il triangolo
a m i, ſi troua ſimile all’uno, &
all’altro de i due trianguli m a h. & a K d. & perche lo angulo d K a. è giusto per la trenteſima del trenteſimo.
113[Figure 113]c p l k b m i o b a e d f o A dunque per la uinteſimanona del primo d K m, ſono egualmente distanti, impe-
roche per le coſe dimoſtrate h i m h.
ſono perpendicolari al piano del circolo a b d
f.
A dunque egli è proportionale, che come ſi ha d a. ad a K coſi ſi habbia K a. ad a i.
& i a ad a m. percioche i triangoli d a K. K a i. i m a. ſono ſimili per la quarta del
ſeſto, &
coſi ſeguita che quattro dritte linee d a. a K. a i. a m ſiano continue propor
tionali, ma la a m.
ſi troua eguale alla c, & per la commune ſententia, quelle coſe
che ſono eguale ad una, ſono tra ſe eguali, perche la a m ſi troua eguale alla a b.

A dunque proposte due linee ad.
c. ne hauemo trouate due di mezzo proportiona-
6660 li, che ſono a K.
a i. come doueuamo fare. Platone ſimilmente ne fece, & la dimo
ſtratione, &
lo inſlrumento, come qui ſotto poneremo. Lega le due dritte linee,
tra lequali uuoi trouarne due proportionali, legale dico in un angulo dritto nel purt
to b.
& ſia la maggiore b g. & la minore e b. allonga poi l’una, & l’altra fuori del
l’angulo b.
la maggiore uerſo il d. & la minore uerſo il c, & fa due anguli dritti
trouando il punto c, &
il punto d. nelle loro linee conueniente, & ſia l’uno angulo
g c d.
& l’altro c d e. ſi dico, che tra le due linee dritte e b. & b g. proportionato ha
uerai due altre linee, che ſono b d.
& b c. perche preſuppoſto hauemo lo angulo e d
c.
eſſer dritto, & la e d. eſſer par alella alla c g. pero ne ſegue per la 29 del primo,
che lo angulo g c d.
ſia giuſto, & eguale allo angulo c d e. ilquale ſimilmente eſſer
7770 giuſto preſupponemo, ma la d b per lo nostro componimento cade porpendicolare
ſopra la g b d.
adunqae per lo corolario della ottaua del ſesto la b d. è quella linea
proportionata, che cade tra la e b, &
la b c. & ſunilmente la linea b c, è la mezza
na proportionale tra la b d.
& la b g. poſta adunque la ragione, & la proportione
commune della linea b d alla linea b c.
ne ſeguita che la e b h iuera quello r ſpet o di
comparatione alla linea b d.
che hauer a la c b. alla linea b c. percioche l’una, et

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index