Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of figures

< >
[Figure 211]
[Figure 212]
[Figure 213]
[Figure 214]
[Figure 215]
[Figure 216]
[Figure 217]
[Figure 218]
[Figure 219]
[Figure 220]
[Figure 221]
[Figure 222]
[Figure 223]
[Figure 224]
[Figure 225]
[Figure 226]
[Figure 227]
[Figure 228]
[Figure 229]
[Figure 230]
[Figure 231]
[Figure 232]
[Figure 233]
[Figure 234]
[Figure 235]
[Figure 236]
[Figure 237]
[Figure 238]
[Figure 239]
[Figure 240]
< >
page |< < (201) of 458 > >|
239201Conicor. Lib. VI.
Et quia N O ad O A eſt vt P Q ad Q D inuertamus proportionem,
11d deinde bifariam ſecemus duas tertias partes, &
inuertamus eas quoque
fiet N O ad O R, nempe N L ad L T in eadem ratione ipſi V Z, nempe
L B ad B Z, vt D Q ad Q T, nempe P M ad P X æqualem ipſi Y a,
nempe M E ad E a, &
c. Quoniam L O ad O I oſtenſa fuit vt M Q ad Q
K, &
propter parallelas I A, L N, nec non D K, M P eſt N O ad O A, vt L O
ad O I;
pariterq; P Q ad Q D eſt vt M Q ad Q K; igitur N O ad O A eandẽ
proportionẽ habet, quàm P Q ad Q D, &
comparando antecedentes ad ſemidif-
ferentias, vel ſemisũmas terminorũ erit N O ad R A, vt P Q ad S D:
& pro-
272[Figure 272] pterea N O ad O R ſummã, vel differentiã conſequentium eandem proportionem
habebit, quàm P Q ad Q S;
ſed propter parallelas R T, & O L eſt L N ad T L,
vt N O ad O R:
pariterque (propter parallelas S X, & Q M) eſt P M ad X
M, vt P Q ad Q S;
igitur N L ad L T eandem proportionem habet, quàm
P M ad M X:
ſuntque in parallelogrammis V L, & γ M latera oppoſita æqua-
lia V Z ipſi T L, atque a γ ipſi X M;
igitur N L ad V Z eandem proportio-
nem habet, quàm P M ad γ a, &
ita erunt earum quadrata; ſed vt quadratũ
2220 lib. 1. N L ad quadratum V Z ita eſt abſciſſa L B ad abſcißam B Z, pariterque vt
quadratum P M ad quadratum γ a, ita eſt abſciſſa M E ad abſcißam E a;
er-
go L B ad B Z eandem proportiònem habet, quàm M E ad E a.
Et occurrere faciamus par pari remanet O R ad R b, vt Q S ad S c, & c.
33e Quoniam oſtenſa fuit O N ad O R, vt Q P ad Q S, per conuerſionem rationis
O N ad N R erit vt Q P ad P S, pariterque oſtenſa fuit b N ad N O, vt
c P ad P Q;
ergo ex æquali b N ad N R eſt vt c P ad S P, & diuidendo b R
ad R N erit vt c S ad S P;
ſed erat inuertendo R N ad N O, vt S P ad P Q;
quare comparando antecedentes ad differentias terminorum erit N R ad R O vt
P S ad S Q;
ideoq; rurſus ex æqualitate b R ad R O erit vt c S ad S Q; eſtq;
V R ad R b vt γ S ad S c (eo quod triangula V R b, &
γ S c ſunt ſimilia
triangulis ſimilibus O N L, &
Q M P propter æquidiſtantes) ergo ex æquali
ordinata V R ad R O eandem proportionem habet, quàm γ S ad S Q.

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index