245207Conicor. Lib. VI.
les cum diametris, quæ abſciſſis ſint proportionales, &
abſciſſæ quoque inter ſe.
Vnde ſequitur, quod portiones eiuſdem diametri E K à centro M ad omnes or-
dinatim ad diametros applicatas ſint æquales inter ſe, vt oſtenſum eſt in propo-
ſitione 13. huius: quod eſt impoſſibile.
Vnde ſequitur, quod portiones eiuſdem diametri E K à centro M ad omnes or-
dinatim ad diametros applicatas ſint æquales inter ſe, vt oſtenſum eſt in propo-
ſitione 13. huius: quod eſt impoſſibile.
Quando verò ſectio A C eſt byperbole, ac ſectio D F eſt ellipſis, ſimiliter,
vt in 14. propoſitione huius, oſtendetur; quo abſciſſæ in hyperbola, & ellipſi ſint
proportionales; & propterea omnes habebunt rationes maioris inæqualitatis, aut
omnes habebunt, proportiones inæqualitatis minoris, quod tamen in prædicta 14.
propoſitione impoſſibile eſſe oſtenditur.
vt in 14. propoſitione huius, oſtendetur; quo abſciſſæ in hyperbola, & ellipſi ſint
proportionales; & propterea omnes habebunt rationes maioris inæqualitatis, aut
omnes habebunt, proportiones inæqualitatis minoris, quod tamen in prædicta 14.
propoſitione impoſſibile eſſe oſtenditur.
Notæ in Propoſit. XXIV.
SI enim hoc verum non eſt, &
c.
Quod quælibet portio B A D ſectionis
11a conicæ A B G nullo pacto circumferentia circuli eſſe poſſit ſic oſtendetur.
Quia in circulo rectæ lineæ diuidentes bifariam duas parallelas inter ſe ſunt
neceſſariò diametri circuli, qui perpendicu-
281[Figure 281] lariter ſecant prædictas parallelas applica-
tas; igitur ſi curua linea B G D fuerit cir-
culi peripheria rectæ lineæ K I, L M, &
N O diametri circuli, erunt perpendicula-
res ad ordinatim applicatas æquidiſtantes
inter ſe; ſed quia etiam A B G ſupponitur
ſectio conica, erunt K I, L M, N O axes
prædictæ ſectionis conicæ eo quod bifariam,
& ad angulos rectos diuidunt ordinatim ap-
plicatas. Rurſus quia prædictæ ordinatim
applicatæ non ſunt omnes inter ſe parallelæ,
eo quodex conſtructione applicatæ A B, A C,
C D non fuerunt ductæ æquidiſtantes; igi-
tur tres axes I K, L M, N O indirectum
2248. lib. 2. non coincidunt; quare in ſectione conica B A G reperiri poſſent tres axes; quod
eſt impoſſibile.
11a conicæ A B G nullo pacto circumferentia circuli eſſe poſſit ſic oſtendetur.
Quia in circulo rectæ lineæ diuidentes bifariam duas parallelas inter ſe ſunt
neceſſariò diametri circuli, qui perpendicu-
281[Figure 281] lariter ſecant prædictas parallelas applica-
tas; igitur ſi curua linea B G D fuerit cir-
culi peripheria rectæ lineæ K I, L M, &
N O diametri circuli, erunt perpendicula-
res ad ordinatim applicatas æquidiſtantes
inter ſe; ſed quia etiam A B G ſupponitur
ſectio conica, erunt K I, L M, N O axes
prædictæ ſectionis conicæ eo quod bifariam,
& ad angulos rectos diuidunt ordinatim ap-
plicatas. Rurſus quia prædictæ ordinatim
applicatæ non ſunt omnes inter ſe parallelæ,
eo quodex conſtructione applicatæ A B, A C,
C D non fuerunt ductæ æquidiſtantes; igi-
tur tres axes I K, L M, N O indirectum
2248. lib. 2. non coincidunt; quare in ſectione conica B A G reperiri poſſent tres axes; quod
eſt impoſſibile.
SECTIO NONA
Continens Propoſit. XXV.
SI duo plana æquidiſtantia conum aliquem ſecuerint, atque
33b in eo efficiant duas hyperbolas, aut ellipſes; vtique ſectio-
nes ſimiles inter ſe erunt, ſed non erunt neceſſariò æquales.
33b in eo efficiant duas hyperbolas, aut ellipſes; vtique ſectio-
nes ſimiles inter ſe erunt, ſed non erunt neceſſariò æquales.