Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of contents

< >
[241.] Notæ in Propoſit. XXVIII.
[242.] LEMMAX.
[243.] SECTIO VNDECIMA Continens Propoſit. XXIX. XXX. & XXXI. PROPOSTIO XXIX.
[244.] PROPOSITIO XXX.
[245.] PROPOSITIO XXXI.
[246.] Notæ in Propoſit. XXIX.
[247.] Notæ in Propoſit. XXX.
[248.] Notæ in Propoſit. XXXI.
[249.] LIBRI SEXTI FINIS.
[250.] DEFINITIONES. I.
[251.] II.
[252.] III.
[253.] IV.
[255.] VI.
[256.] VII.
[257.] VIII.
[258.] NOTÆ.
[259.] SECTIO PRIMA Continens Propoſit. I. V. & XXIII. Apollonij. PROPOSITIO I.
[260.] PROPOSITIO V. & XXIII.
[261.] Notæ in Propoſit. I.
[262.] Notæ in Propoſit. V. & XXIII.
[263.] SECTIO SECVNDA Continens Propoſit. II. III. IV. VI. & VII. Apollonij. PROPOSITIO II. & III.
[264.] PROPOSITIO IV.
[265.] PROPOSITIO VI. & VII.
[266.] Notæ in Propoſit. II. III.
[267.] Notæ in Propoſit. IV.
[268.] Notæ in Propoſit. VI. & VII.
[269.] SECTIO TERTIA Continens Propoſit. Apollonij VIII. IX. X. XI. XV. XIX. XVI. XVIII. XVII. & XX.
[270.] Notæ in Propoſit. VIII.
< >
page |< < (217) of 458 > >|
255217Conicor. Lib. VI. E I ſunt æquales, & parallelæ; ergo H I æqualis erit, & parallela ipſi B E (vel
quia additur communis H E, vel propter parallelogrammum B I) ſed prius A
R æqualis erat, &
parallela eidem B E; igitur A R, & H I æquales ſunt inter
ſe, &
æquidiſtantes; ideoque coniungentes A H, R I erunt æquales, & paral-
lelæ;
ſuntque anguli A H B, & R I E æquales inter ſe, cum ab æqualibus la-
teribus in triangulis A B H, &
R E I æquilateris inter ſe contineantur; ergo
R I ordinatim quoque applicata eſt ad àiametrum E I;
atque in ſectionibus æ-
qualibus abſciſsæ B H, E I
295[Figure 295] diametrorum ſimilium, ſci-
licet æque inclinatarum ad
ſuas ordinatas æquales ſunt
inter ſe;
nec non ordinatæ A
H, I R æquales ſunt oſten-
sæ;
igitur ſicut punctum A in
11ex 10.
huius.
ſectione A B cadit, ita pun-
ctum R in ſectione E D exi-
ſtit;
ſed poſitus fuit intra,
aut extra ipſam, quod eſt ab-
ſurdũ:
Non igitur recta linea
A D maior, aut minor eſſe
poteſt, quàm B E;
ideoque ei
quælibet alia intercepta K L æqualis omnino erit.
Simili ratiocinio oſtendetur
æquidiſtans ipſi B E eidem
296[Figure 296] æqualis;
quapropter interce-
ptæ A D, K L, &
B E æqua-
les erunt inter ſe:
Quod erat
oſtendendum.
Si duæ parabolæ B A C,
F D E æquales ad eaſdem
22SCHO-
LIVM.
partes cauæ, conſtitutæ ſue-
rint circa axes A K, D G
æquidiſtantes, &
non con-
gruentes ſe mutuo ſecabunt.
Ex vertice D axis G D ducatur D H perpendicularis ad axim A K, eum ſe-
cans in H, &
deſcribatur alia parabolæ I H L æqualis prioribus B A, vel E
D, cuius axis ſit K H, &
ver-
297[Figure 297] tex H, &
ſicuti in propoſi-
tione 4.
additarum factum
eſt, reperiatur B F C ordina-
tim ad axes applicata ſecans
parabolas in E, B, I, &
axes
in G, K, ita vt intercepta
B I æqualis ſit D H, ſen G
K, quæ in parallelogrammo
D K ei æqualis eſt.
Quoniā
parabolæ E D, &
I H

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index