256218Apollonij Pergæi
les ſunt, &
axium abſciſſæ D G, H K æquales cum ſint latera oppoſita paralle-
11ex prop@@.
huius. logrammi D K; ergo ordinatim ad axes applicatæ E G, & I K æquales ſunt, &
ablata communi I G, erit E I æqualis G K, ſeu D H; erat autem intercepta
B I æqualis eidem D H; igitur B I erit æqualis E I; & propterea punctum E
parabolæ E D F cadet ſuper punctum B parabolæ B A C; ergo duæ parabolæ B
22Maurol.
27. lib
Conic. A C, & E D F conueniunt in vno puncto, & in eo ſe mutuo tangere non poſ-
ſunt; igitur ſe mutuo ſecant. Quare patet propoſitum.
11ex prop@@.
huius. logrammi D K; ergo ordinatim ad axes applicatæ E G, & I K æquales ſunt, &
ablata communi I G, erit E I æqualis G K, ſeu D H; erat autem intercepta
B I æqualis eidem D H; igitur B I erit æqualis E I; & propterea punctum E
parabolæ E D F cadet ſuper punctum B parabolæ B A C; ergo duæ parabolæ B
22Maurol.
27. lib
Conic. A C, & E D F conueniunt in vno puncto, & in eo ſe mutuo tangere non poſ-
ſunt; igitur ſe mutuo ſecant. Quare patet propoſitum.
His demonſiratis manifeſtè percipitur, quod ex ſucceſſiua diminutione rectarũ
æquidiſtantium, inter coniſectiones interceptarum, deduci non poteſt, coniſe-
ctiones magis ad ſe ipſas propius accedere; propterea quod in ij ſdem ſectionibus
aſymptoticis duci poßunt interceptæ rectæ lineæ inter ſe æquidiſtantes, quæ ſint
omnes æquales inter ſe, nimirum illæ, quæ parallelæ ſunt alicui communi dia-
metro, vel rectæ lineæ vertices earum coniungenti, vt in propoſitione 5. additarũ
oſtenſum eſt. Similiter aliæ interceptæ rectæ lineæ, inter ſe æquidiſtantes ſucceſſiuè
augentur aliæ verò ſucceſſiuè diminuuntur verſus caſdem partes, vt in propoſitione
3. & 4. addit. oſtenſum eſt. Et hoc nedũ verificatur in ſectionibus non congruen-
tibus, & asymptoticis, ſed etiã in duabus æqualibus, & inter ſe ſimilibus ſectioni-
bus ſe mutuo ſecantibus, dummodo earum axes paralleli ſint, in ijs enim inter-
ceptæ rectæ lineæ inter ſe æquidiſtantes, tendentes ad eaſdem partes, etiam illæ,
quæ proprius ad punctum occurſus ſcctionum conicarum accedunt, poßunt dimi-
nui, pariterque inter ſe æquales eße, & quod mirum eſt poßunt ſemper magis
augeri. Si igitur æquidiſtantes interceptæ ſunt menſuræ diſtantiarũ duarum ſe-
ctionum, eædem coniſectiones cenſeri debent modo parallelæ, & æqualibus inter-
uallis inter ſe diſtantes, modo ad eaſdem partes ſtringi, & coanguſtari, & ſi-
mul dilatari magis, ac magis, quod omnino videtur abſurdum. Non igitur ex
eo qnod omnes interceptæ rectæ lineæ inter ſe æquidiſtantes ſunt æquales inter ſe;
propterea ſectiones ipſæ crunt parallelæ, & asymptoticæ, & ſemper æquali in-
teruallo ad inuicem ſeparatæ; neque ex eo quod prædictæ parallelæ magis augẽ-
tur, vel diminuuntur interualla augeri, vel ſtringi cenſendum eſt.
æquidiſtantium, inter coniſectiones interceptarum, deduci non poteſt, coniſe-
ctiones magis ad ſe ipſas propius accedere; propterea quod in ij ſdem ſectionibus
aſymptoticis duci poßunt interceptæ rectæ lineæ inter ſe æquidiſtantes, quæ ſint
omnes æquales inter ſe, nimirum illæ, quæ parallelæ ſunt alicui communi dia-
metro, vel rectæ lineæ vertices earum coniungenti, vt in propoſitione 5. additarũ
oſtenſum eſt. Similiter aliæ interceptæ rectæ lineæ, inter ſe æquidiſtantes ſucceſſiuè
augentur aliæ verò ſucceſſiuè diminuuntur verſus caſdem partes, vt in propoſitione
3. & 4. addit. oſtenſum eſt. Et hoc nedũ verificatur in ſectionibus non congruen-
tibus, & asymptoticis, ſed etiã in duabus æqualibus, & inter ſe ſimilibus ſectioni-
bus ſe mutuo ſecantibus, dummodo earum axes paralleli ſint, in ijs enim inter-
ceptæ rectæ lineæ inter ſe æquidiſtantes, tendentes ad eaſdem partes, etiam illæ,
quæ proprius ad punctum occurſus ſcctionum conicarum accedunt, poßunt dimi-
nui, pariterque inter ſe æquales eße, & quod mirum eſt poßunt ſemper magis
augeri. Si igitur æquidiſtantes interceptæ ſunt menſuræ diſtantiarũ duarum ſe-
ctionum, eædem coniſectiones cenſeri debent modo parallelæ, & æqualibus inter-
uallis inter ſe diſtantes, modo ad eaſdem partes ſtringi, & coanguſtari, & ſi-
mul dilatari magis, ac magis, quod omnino videtur abſurdum. Non igitur ex
eo qnod omnes interceptæ rectæ lineæ inter ſe æquidiſtantes ſunt æquales inter ſe;
propterea ſectiones ipſæ crunt parallelæ, & asymptoticæ, & ſemper æquali in-
teruallo ad inuicem ſeparatæ; neque ex eo quod prædictæ parallelæ magis augẽ-
tur, vel diminuuntur interualla augeri, vel ſtringi cenſendum eſt.
Et præcipuè præſtantiſſimus Gregorius à Sancto Vincentio neſcio an iure de-
monſtrationem propoſitionis 14. libri 2. ipſiuſmet Apollonij inſufficientem repu-
tauerit, propterea quod Apollonius deduxit rectas lineas hyperbolen compræbendẽ-
tes, quæ aſymptoti vocantur ſemper magis, ac magis ſectioni viciniores fieri ex eo
quod rectæ lineæ inter ſe æquidiſtãtes, interceptæ inter rectas asymptotos vocatas,
& hyperbolen contentam ſucceſſiuè ſemper magis, ac magis diminuantur; & è
contra aßeruit cum Cardano, & quodam Rabino Moſe diſtantiam hyperbolæ à re-
ctis asymptotis ſumi debere, non à quibu ſcunque rectis lineis interceptis inter
ſe parallelis, ſed tantummodo à rectis lineis perpendicularibus ad aſymptotos,
quæ ſolummodo, inquiunt ipſi, diſtantias determinant; at reuera hæc animad-
nerſio non videtur neceßaria: perinde enim eſt conſiderare rectas lineas ab hy-
perbole ad vnam rectam lineam continentium ductas, quæ efficiat cum illa an-
gulos æquales, ac ſi perpendiculares eßent ad eandem: at quando rectæ lineæ in-
terceptæ ſunt inter ſe æquidiſtantes, tunc omnes efficiunt ſuper rectam lineam
continentem hyperbolen angulos æquales ad eaſdem partes; & propterca (ex inæ-
qualitate prædictarum æquidiſt antium) optimè concluditur cum Apollonio inæ-
qualitas perpendicularium, ſeu diſtantiarum. Quando verò conſiderantur duæ
lineæ curuæ veluti ſunt duæ parabolæ, vel duæ hyperbolæ, vel ellipſes, tunc
monſtrationem propoſitionis 14. libri 2. ipſiuſmet Apollonij inſufficientem repu-
tauerit, propterea quod Apollonius deduxit rectas lineas hyperbolen compræbendẽ-
tes, quæ aſymptoti vocantur ſemper magis, ac magis ſectioni viciniores fieri ex eo
quod rectæ lineæ inter ſe æquidiſtãtes, interceptæ inter rectas asymptotos vocatas,
& hyperbolen contentam ſucceſſiuè ſemper magis, ac magis diminuantur; & è
contra aßeruit cum Cardano, & quodam Rabino Moſe diſtantiam hyperbolæ à re-
ctis asymptotis ſumi debere, non à quibu ſcunque rectis lineis interceptis inter
ſe parallelis, ſed tantummodo à rectis lineis perpendicularibus ad aſymptotos,
quæ ſolummodo, inquiunt ipſi, diſtantias determinant; at reuera hæc animad-
nerſio non videtur neceßaria: perinde enim eſt conſiderare rectas lineas ab hy-
perbole ad vnam rectam lineam continentium ductas, quæ efficiat cum illa an-
gulos æquales, ac ſi perpendiculares eßent ad eandem: at quando rectæ lineæ in-
terceptæ ſunt inter ſe æquidiſtantes, tunc omnes efficiunt ſuper rectam lineam
continentem hyperbolen angulos æquales ad eaſdem partes; & propterca (ex inæ-
qualitate prædictarum æquidiſt antium) optimè concluditur cum Apollonio inæ-
qualitas perpendicularium, ſeu diſtantiarum. Quando verò conſiderantur duæ
lineæ curuæ veluti ſunt duæ parabolæ, vel duæ hyperbolæ, vel ellipſes, tunc