Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of figures

< >
[Figure 321]
[Figure 322]
[Figure 323]
[Figure 324]
[Figure 325]
[Figure 326]
[Figure 327]
[Figure 328]
[Figure 329]
[Figure 330]
[Figure 331]
[Figure 332]
[Figure 333]
[Figure 334]
[Figure 335]
[Figure 336]
[Figure 337]
[Figure 338]
[Figure 339]
[Figure 340]
[Figure 341]
[Figure 342]
[Figure 343]
[Figure 344]
[Figure 345]
[Figure 346]
[Figure 347]
[Figure 348]
[Figure 349]
[Figure 350]
< >
page |< < (255) of 458 > >|
293255Conicor. Lib. VI. alius circulus F D a perpendicularis ad planum trianguli per axim L E K; erat
autem ex conſtructione planum byperboles D E F perpendiculare ad idem planum
per axim E L K;
igitur duorum planorum communis ſectio, quæ ſit F G D per-
pendicularis quoque erit ad planum trianguli L E K:
& ideo efficiet angulos F
G E, &
F G a rectos, & G E H producta ſubtendit angulum externum trian-
guli conici E L K;
quapropter planum D E F efficiet in cono E L K byperbolen,
cuius axis tranſnerſus erit H E.
Alias eontineat illam alius conus ſimilis cono A B C, ſitque vertex
11d eius R in plano L E G, &
duo latera trianguli illius ſint E R, T R; ergo
angulus E R T æqualis eſt E L K, &
eſt in cir cumferentia arcus E L H;
ergo T R ſi producatur, occurret H: & c. Senſus buius textus corrupti ta-
lis eſt:
Si enim fieri poteſt, vt aliquis alius conus, vt E R T, qui ſimilis ſit
cono A B C, vel E L K, contineat eandem byperbolam D E F, &
conorum,
vertices R, &
L ad eaſdem partes tendant, erunt duo plana iriangulorum per
axes conorum ducta perpendicularia ad planum ſectionis D E F;
alias E G non
eßet axis hyperbole D E F;
Et quia coni ſitpponuntur ſimiles erunt quoque
22E ex Def. 8. triangula per axes E L K, &
E R T ſimilia int er ſe; & ideo anguli verticales.
L K, & E R T æquales inter ſe erunt, atque ſu bſequentes anguli E L H, & E R
H æquales quoque inter ſe erunt, &
ſubtendunt commune latus tranſuerſum H
E;
igitur duo anguli E L H, & E R H in eodem circuli ſegmento conſiſtunt.
Textus igitur corrigi debebat vt dictum eſt.
Atque T S æqualis eſt ipſi E, & T S ad S E eſt, vt T R ad R H, quæ
33e eſt vt E V ad V N;
ergo E V æqualis eſt V H, & c. In duobus triangulis
iſoſcelijs inter ſe ſimilibus A B C, &
E R T ab æqualibus angulis verticalibus
A B C, &
E R T ducuntur rectæ lineæ B Q, R S ſecantes baſes in Q, & S:
eſtque quadratum R S ad rectangulum E S T, vt quadratum B Q ad rectangu-
lum A Q C, &
ſecatur A C bifariam in Q; oſtendendum eſt E T in duas par-
tes æquales in S quoque ſecari.
Si enim boc verum non eſt E T in alio puncto
bifariam diuidetur vt in b iungaturquè R
341[Figure 341] b.
Quoniam à verticibus triangulorum,
A B C, &
R E T iſoſcelium ducuntur re-
ctæ lineæ B Q, R b diuidentes baſes bifa-
riam in Q, b, ergo anguli ad Q, &
b
ſunt recti, &
erant anguli A, & E æquales
(propter ſimilitudinem eorundem triangu-
lorum) igitur triangula A B Q, &
E R b
ſimilia ſunt, ideoq;
B Q ad Q A erit vt R b
ad b E, &
quadratũ B Q ad quadratum Q A erit vt quadratũ R b ad quadratũ
b E;
erat autem quadratum R S ad rectangulum E S T vt quadratum B Q ad
quadratum Q A;
ergo quadratum R b ad quadratum b E eandem proportionem
habet, quàm quadratum R S ad rectangulum E S T;
eſtque quadratum R b
minus quadrato R S (cum perpendicularis R b minor ſit quàm R S) quarè qua-
dratum ex b E ſemiſſe totius E T minus erit rectangulo E S T ſub ſegmentis
inæqualibus eiusdem E T contento;
quod eſt abſurdum: quarè neceſſario E T
bifariam ſecatur in S.
Poſtea propter parallela R S, & H E, vt T S ad S E
ita erit T R ad R H;
& propter parallelas R V, & E T erit E V ad V H, vt
T R ad R H, ſeu T S ad S E:
oſtenſa autem fuit T S æqualis S E; igitur

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index