Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of figures

< >
[Figure 351]
[Figure 352]
[Figure 353]
[Figure 354]
[Figure 355]
[Figure 356]
[Figure 357]
[Figure 358]
[Figure 359]
[Figure 360]
[Figure 361]
[Figure 362]
[Figure 363]
[Figure 364]
[Figure 365]
[Figure 366]
[Figure 367]
[Figure 368]
[Figure 369]
[Figure 370]
[Figure 371]
[Figure 372]
[Figure 373]
[Figure 374]
[Figure 375]
[Figure 376]
[Figure 377]
[Figure 378]
[Figure 379]
[Figure 380]
< >
page |< < (272) of 458 > >|
310272Apollonij Pergæi reliquæ verò lineæ referuntur ad hoc latus.
VII.
Inſuper vocabo duas diametros coniugatas, & æquales in elli-
pſi, ÆQVALES.
Et ſi quidem ad vtraſque partes axis ſectionis duæ diame-
tri educantur, quæ ad ſua erecta eandem proportionem ha-
beant, vtique vocabo cas ÆQVALES.
VIII.
Diametros verò æquales ad vtraſque partes duarum axium elli-
pſis cadentes, voco Homologas illius axis:
ſuntque homo-
logæ diametri in ellipſi tranſuerſa ad tranſuerſam, &
recta
ad rectam.
NOTÆ.
I. P Rima definitio breuiſſimè exponi poteſt hac ratione. Si axis tranſuerſus
interius in hyperbola diuidatur, aut exterius in ellipſi, ſecundum pro-
portionem figuræ, ſegmentum homologum axis tranſuerſi vocabo Præſectum, vt
ſi fuerit hyperbole, vel ellipſis A B, cuius axis tranſuerſus A C, centrum D,
latus rectũ A F, &
in hyperbola ſecetur C A inter vertices A, & C; in ellipſi
verò ſecetur exterius in puncto G, ita vt ſumma, vel differentia ipſarum G A,
&
axis C A, ideſt C G ad G A habeat proportionem figuræ ſcilicet eandem,
quàm habet latus tranſuerſum C A ad latus rectum A F;
tunc quidem vocatur
recta linea C G Præſecta.
II. Atque G A vocatur Intercepta.
III. Punctum verò A extremum
357[Figure 357] interceptæ G A, &
diametri C A
vocabitur terminus communis dua-
rum linearum, ſcilicet axis C A, &

additæ, vel ablatæ A G.
IV. Punctum verò G, in quo axis
A C interius, vel exterius diuiditur
ſecundum proportionem figuræ voca-
tur terminus diuidens;
Si verò ſece-
tur C H æqualis A G vocabitur etiã
C H intercepta, &
A H præſecta,
atque C terminus communis, &
H
terminus diuidens.
V. Si diameter I L ſecuerit biſa-
riam ſubtenſam A B à ſectionis ver
tice A eductam, atque à termino

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index