Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of Notes

< >
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
< >
page |< < (273) of 458 > >|
311273Conicor. Lib. VII. ducatur B E perpendicularis ad axim eum ſecans in E, tunc quidem axis ſeg-
mentum C E ab oppoſito vertice C ductum, vocat interpres Latus.
Poſtea ſum-
mam in prima ellipſi, &
differentiam in reliquis figuris lateris C E, & inter-
ceptæ H C, nimirum ipſam lineam H E, vocat Interceptam comparatam.
VI. Et lateris C E, & præſectæ G C differentia in tribus prioribus figuris,
&
ſumma in figura quarta, ideſt G E, vocatur Præſecta comparata.
VII. Ducantur in ellipſi A B C duæ diametri coniugatæ I L, & N O, quæ
inter ſe ſint æquales.
Vel tranſuerſa I L ad eius latus rectum eandem propor-
tionem habeat, quàm eius coniugata N O ad ſuum latus rectum;
tunc quidem
vocat pariter diametros coniugatas I L, N O AEquales.
358[Figure 358]
SECTIO PRIMA
Continens Propoſit. I. V. & XXIII.
Apollonij.
PROPOSITIO I.
SI in parabola A B à termino
359[Figure 359] axis A D educatur recta linea
A B ſubtendens ſegmentum @ectionis
A B, &
ab eius termino ducatur B
D ad axim perpendicularis;
vtiquè
illa chorda poterit eius abſciſſam D
A in aggregatum abſciſſæ, &
erecti.
Fiat A F æqualis erecto A E. Quia
11a quadratum A B eſt æquale quadrato D

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index