Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of figures

< >
[Figure 391]
[Figure 392]
[Figure 393]
[Figure 394]
[Figure 395]
[Figure 396]
[Figure 397]
[Figure 398]
[Figure 399]
[Figure 400]
[Figure 401]
[Figure 402]
[Figure 403]
[Figure 404]
[Figure 405]
[Figure 406]
[Figure 407]
[Figure 408]
[Figure 409]
[Figure 410]
[Figure 411]
[Figure 412]
[Figure 413]
[Figure 414]
[Figure 415]
[Figure 416]
[Figure 417]
[Figure 418]
[Figure 419]
[Figure 420]
< >
page |< < (285) of 458 > >|
323285Conicor. Lib. VII. drata H E, & ipſius E G, ſiue ad differentiam duorum quadratorum L
I, &
ipſius I P eandem proportionem habebit, quàm quadratum H E
ad differentiam duorum quadratorum H E, &
E G. Et iam oſtenſum eſt
quod quadratum A C ad quadratum I L eandem proportionem habet,
quàm C G in H E ad quadratum H E;
8. ergo ex æqualitate quadratum
A C, fiue ad quadratum ſummæ I L, N O eſt, vt C G in H E ad qua-
dratum E H V;
9. ſiue ad quadratum differentiæ eius, quæ eſt inter I
11c L, N O eſt vt C G in H E ad quadratum exceſſus E H ſupra H V:
10.
22d ſiue ad I L in N O erit, vt C G ad H V: 11. ſiue ad duorum quadrato-
33e375[Figure 375] rum I L, N O ſummam, erit vt
C G ad ſummam G E, E H;
12.
44f ſiue ad quadratum I P erit, vt
C G in H E ad quadratum E G:
13. ſiue ad quadratum differen-
55g tiæ L I, I P erit, vt C G in E
H ad quadratum differentiæ H
E, E G:
14. ſiue ad quadratum
66h ex recta linea æquali sũmæ dua-
rum L I, I P, erit vt C G in
E H ad quadratum ex recta li-
nea compoſita ex H E, E G:
77i 15. ſiue ad L I in I P erit vt C G ad G E: 16. ſiue ad duo quadrata ex
L I, &
ex I P erit vt C G in E H ad duo quadrata E G, & E H: 17.
88k ſiue ad differentiam duorum quadratorum ex L I, & ex I P erit vt C G
99l in E H ad differentiam duorum quadratorum ex H E, &
ex E G. Et
hoc erat propoſitum.
Notæ in Propoſit. VIII.
IIſdem figuris manentibus ſit H V potens comparata, & c. Præter defi-
1010a nitiones ſuperius expoſitas hic duæ aliæ declarari debent, ignotum enim eſt
quid nam nomine Figuræ comparatæ, &
Potentis comparatæ intelligi debeat.
Itaq; rectangulum ſub præſecta comparata, & intercepta comparata contentum,
ideſt rectangulum H E G vocatur Figura comparata:
& ſi quadratum rectæ li-
neæ H V æquale fuerit rectangulo H E G vocatur H V Potens comparata.
Ergo S D in D M ad quadratum D I, nempe E C in C A ad qua-
1111b dratũ C E, &
c. AEqualia enim ſpatia, ſcilicet rectangulũ S D M, & quadratũ
121237. lib. I. D A ad idem quadratum I D habent eandem proportionem;
ſed quia triangula
M I D, &
A B C ſimilia ſunt, propterea quod latera homologa ſunt parallela
inter ſe;
pariterquè triangula D S I, & C E B ſunt ſimilia, vt oſtenſum eſt
in 6.
& 7. huius; ergo S D ad D I erit vt E C ad C B, atquè M D ad D I
eſt vt A C ad C B erunt compoſitæ proportiones eædem inter ſe, ſcilicet rectan-
gulum S D M ad quadratum D I eandem proportionem habebit, quàm rectan-
gulum E C A ad quadratum C B;
quare vt quadratum A D ad quadratum
D I, ſeu vt quadruplum ad quadruplum, ſcilicet vt quadratum A C ad qua-
dratum I L, co quod A D, &
I D ſemiſſes ſunt diametrorum A C, I L.

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index