Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of handwritten notes

< >
< >
page |< < (298) of 458 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div915" type="section" level="1" n="286">
          <p style="it">
            <s xml:id="echoid-s10796" xml:space="preserve">
              <pb o="298" file="0336" n="337" rhead="Apollonij Pergæi"/>
            æqualis erit differentiæ quadratorum ex I L, & </s>
            <s xml:id="echoid-s10797" xml:space="preserve">ex N O; </s>
            <s xml:id="echoid-s10798" xml:space="preserve">eſtque pariter diame-
              <lb/>
            ter illa remotior ab axe maior quàm I L; </s>
            <s xml:id="echoid-s10799" xml:space="preserve">ergo ſimili ratiocinio oſtendetur, quod
              <lb/>
            differentia coniugatarum diametrorum ab axe remotiorum minor eſt, quàm dif-
              <lb/>
            ferentia propinquiorum I L, & </s>
            <s xml:id="echoid-s10800" xml:space="preserve">N O.</s>
            <s xml:id="echoid-s10801" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div917" type="section" level="1" n="287">
          <head xml:id="echoid-head357" xml:space="preserve">SECTIO QVINTA</head>
          <head xml:id="echoid-head358" xml:space="preserve">Continens Propoſit. XXI. XXVIII. XXXXII.
            <lb/>
          XXXXIII. XXIV. & XXXVII.</head>
          <p>
            <s xml:id="echoid-s10802" xml:space="preserve">AXes hyperboles ſi fuerint æquales, tunc quælibet diame-
              <lb/>
            tri coniugatæ in illa ſectione æquales ſunt 21. </s>
            <s xml:id="echoid-s10803" xml:space="preserve">ſi verò fue-
              <lb/>
            rit 28. </s>
            <s xml:id="echoid-s10804" xml:space="preserve">vnus duorum axium in hyperbola, aut ellipſi maior,
              <lb/>
              <note position="right" xlink:label="note-0336-01" xlink:href="note-0336-01a" xml:space="preserve">a</note>
            tunc eius diameter homologa maior erit ſua coniugata, quouſ-
              <lb/>
            què ad duas æquales diametros coniugatas in ellipſi peruenia-
              <lb/>
            tur, & </s>
            <s xml:id="echoid-s10805" xml:space="preserve">axis maior ad ſuum coniugatum, ſiuè ad erectum eius
              <lb/>
            maiorem proportionem habet, quàm quælibet alia diameter
              <lb/>
            eiuſdem ſectionis ad ſibi coniugatam, ſiue ad eius erectum;
              <lb/>
            </s>
            <s xml:id="echoid-s10806" xml:space="preserve">eritque proportio maioris diametri axi proximioris ad ſibi con-
              <lb/>
            iugatam, ſiue ad eius erectum maior proportione maioris con-
              <lb/>
            iugatarum ab illo remotioris ad minorem, ſiue ad eius erectũ. </s>
            <s xml:id="echoid-s10807" xml:space="preserve">
              <lb/>
            Et minima figurarum diametrorum erit figura axis inclinati, ſiue
              <lb/>
            tranſuerſi, & </s>
            <s xml:id="echoid-s10808" xml:space="preserve">maxima erit figura recti in ellipſi: </s>
            <s xml:id="echoid-s10809" xml:space="preserve">atque figuræ
              <lb/>
            reliquarum diametrorum (ſiue diametri ſint inclinatæ, vel tran-
              <lb/>
            ſuerſæ) maiores ſunt, quã figuræ diametrorũ ab axi remotiorũ 24. </s>
            <s xml:id="echoid-s10810" xml:space="preserve">
              <lb/>
            Et in ellipſi erectus axis tranſuerſi minor eſt, quã erectus cuiuslibet
              <lb/>
            alterius diametri, & </s>
            <s xml:id="echoid-s10811" xml:space="preserve">erectus proximioris diametri minor eſt erecto
              <lb/>
            cuiuslibet remotioris 37. </s>
            <s xml:id="echoid-s10812" xml:space="preserve">Et
              <lb/>
              <figure xlink:label="fig-0336-01" xlink:href="fig-0336-01a" number="390">
                <image file="0336-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/xxxxxxxx/figures/0336-01"/>
              </figure>
            exceſſus axis tranſuerſi ſuper e-
              <lb/>
            ius coniugatum maior eſt, quã
              <lb/>
            exceſſus homologarum diame-
              <lb/>
            trorum, ſuper ſuas coniugatas,
              <lb/>
            & </s>
            <s xml:id="echoid-s10813" xml:space="preserve">exceſſus proximioris homo-
              <lb/>
            logæ ſuper ſuam coniugatam
              <lb/>
            maior eſt, quàm exceſſus re-
              <lb/>
            motioris ſuper eius coniugatã.
              <lb/>
            </s>
            <s xml:id="echoid-s10814" xml:space="preserve">Et differentia duorum laterum
              <lb/>
            figuræ axis maior eſt, </s>
          </p>
        </div>
      </text>
    </echo>