Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

List of thumbnails

< >
321
321 (283)
322
322 (284)
323
323 (285)
324
324 (286)
325
325 (287)
326
326 (288)
327
327 (289)
328
328 (290)
329
329 (291)
330
330
< >
page |< < (302) of 458 > >|
341302Apollonij Pergæi ſummam earundem: & ſumma duorum quadratorum ipſarum æqualis eſt
ſummæ duorum quadratorum A C, Q R ( 22.
ex 7. ) ergo ſumma A C,
Q R minor eſt, quàm ſumma I L, N O, atque ſic oſtendetur, quod sũ-
ma I L, N O minor eſt, quàm ſumma S T, V X.
Quod erat propoſitũ.
PROPOSITIO XXXXIII.
D Einde in ellipſi quadratum ſummæ A C, Q R minus eſt quadrato
ſummæ I L, N O;
& ſumma duorum quadratorum A C, Q R
396[Figure 396] æqualis eſt ſummæ duorum quadratorum I L, N O (22.
ex 7. ) igitur
remanet A C in Q R minus quàm I L in N O, &
ſimiliter I L in N O
11f minus erit, quàm S T in V X.
Sed in hyperbola, quia quilibet axium minor eſt homologa diame-
tro coniugatarum;
igitur planum rectangulum ab axibus contentum mi-
nus eſt eo quod à duabus coniugatis continetur hoc igitur in hyperbo-
le manifeſtum eſt.
In ellipſi autem, quia A C ad Q R maiorem proportionem habet;
22g quàm I L ad N O per conuerſionem rationis, & permutando maior A C
ad minorem I L minorem proportionem habebit, quàm differentia ipſa-
rum A C, Q R ad differentiam ipſarum I L &
N O; & propterea diffe-
rentia ipſarum A C, &
Q R maior erit differentia reliquarum I L, & N
O.
Et ſimiliter oſtendetur, quod exceſſus I L ſuper N O maior ſit, quàm
exceſſus S T ſuper V X.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index