Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of contents

< >
[311.] PROPOSITIO XXXIX.
[312.] PROPOSITIO XXXX.
[313.] In Sectionem VII. Propoſit: XXXVIII. XXXIX. & XXXX. LEMMA VI.
[314.] LEMMA VII.
[315.] LEMMA VIII.
[316.] LEMMA IX.
[317.] Notæ in Propoſit. XXXVIII. XXXIX.
[318.] Notæ in Propoſit. XXXX.
[319.] SECTIO OCTAVA Continens Propoſit. XXXXIIII. XXXXV. & XXXXVI.
[320.] PROPOSITIO XXXXVI.
[321.] In Sectionem VIII. Propoſit. XXXXIIII. XXXXV. & XXXXVI. LEMM A.X.
[322.] LEMM A XI.
[323.] LEMM A XII.
[324.] Notæ in Propoſit. XXXXIV. & XXXXV.
[325.] Notæ in Propoſit. XXXXVI.
[326.] SECTIO NONA Continens Propoſit. XXXXI. XXXXVII. & XXXXVIII.
[327.] PROPOSITIO XXXXI.
[328.] PROPOSITIO XXXXVII.
[329.] PROPOSITIO XXXXVIII.
[330.] In Sectionem IX. Propoſit. XXXXI. XXXXVII. & XXXXVIII. LEMMA. XIII.
[331.] LEMMA XIV.
[332.] LEMMA XV.
[333.] Notæ in Propoſit. XXXXI.
[334.] Notæ in Propoſit. XXXXVII.
[335.] Notæ in Propoſit. XXXXVIII.
[336.] SECTIO DECIMA Continens Propoſit. XXXXIX. XXXXX. & XXXXXI.
[337.] In Sectionem X. Propoſit. XXXXIX. XXXXX. & XXXXXI. LEMMA XVI.
[338.] LEMMA XVII.
[339.] LEMMA XVIII.
[340.] Notæ in Propoſit. XXXXIX.
< >
page |< < (307) of 458 > >|
346307Conicor. Lib. VII.
In eadem figura coniungatur recta linèa A Q terminos axium coniungens,
&
per centrum huic parallela ſit e d, perq; idem centrum, & ſemipartitionem
404[Figure 404]405[Figure 405] applicatę A Q ducatur diameter a b:
Dico diametros coniugatas a b, & e d
ęquales eſſe inter ſe.
Quoniam à termino Q ordinatim applicatę A Q ad dia-
metrum a b ducitur ad axim perpendicularis Q D cadens in centrum D;
ergo
11Prop. 7.
huius.
H D ad D G eandem proportionem habet, quàm quadratum diametri a b ad
quadratum eius coniugatę c d;
ſuntquè H D, & G D ęquales inter ſe, cum
ſemiaxes, atquè interceptę ſint ęquales inter ſe;
ergo diametri coniugatę a b,
&
c d ęquales erunt inter ſe hoc pręmiſſo.
Reperiantur in ellipſi duę diametri coniugatę inter ſe ęquales a b, e d, &
inter a, &
A ponantur diametri I L, S T, quarum coniugatę N O, & V X,
406[Figure 406]&
ducãtur reliquę rectę lineę,
vt prius factum eſt, &
pona-
tur primo loco axis A C maior
quàm Q R:
Dico I L maiorem
eſſe ipſa N O, &
S T maiorem
V X.
Quia quadratum A C ad
quadratum Q R eandem propor-
22Defin. 1.
huius.
tionem habet, quàm H A ad A
G, &
quadratum I L ad qua-
dratum N O eandem proportio-
nem habet, quàm H E ad E G;
pariterquè quadratum S T ad
quadratum V X eandem propor-
33Prop. 7.
huius.
tionem habet, quàm H M ad
M G ;
ſed in prima hyperbola,
&
prima ellipſi H A maior eſt,
quàm A G, &
H E maior, quã
E G, atquè H M maior, quàm
M G;
igitnr quadratum I L

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index