Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of contents

< >
[281.] Notæ in Propoſit. XII.
[282.] Notæ in Propoſit. XIII.
[283.] Notæ in Propoſit. XXIX.
[284.] Notæ in Propoſit. XXX.
[285.] Notæ in Propoſit. XIV. & XXV.
[286.] Notæ in Propoſit. XXVII.
[287.] SECTIO QVINTA Continens Propoſit. XXI. XXVIII. XXXXII. XXXXIII. XXIV. & XXXVII.
[288.] PROPOSITIO XXI. & XXVIII.
[289.] PROPOSITIO XXVI
[290.] PROPOSITIO XXXXII.
[291.] PROPOSITIO XXXXIII.
[292.] PROPOSITIO XXIV.
[293.] PROPOSITIO XXXVII.
[294.] Notę in Propoſit. XXVIII.
[295.] LEMMA. I.
[296.] Notę in Propoſit. XXI.
[297.] Notę in Propoſit. XXXXII.
[298.] Notæ in Propoſit. XXXXIII.
[299.] Notæ in Propoſit. XXIV.
[300.] SECTIO SEXTA Continens Propoſit. XXXIII. XXXIV. XXXV. & XXXVI. PROPOSITIO XXXIII.
[301.] PROPOSITIO XXXIV.
[302.] PROPOSITIO XXXV. & XXXVI.
[303.] In Sectionem VI.
[304.] LEMMA II.
[305.] LEMMA III.
[306.] LEMMA IV.
[307.] LEMMA V.
[308.] Notæ in Propof. XXXIII. & XXXIV.
[309.] Notæ in Propoſit. XXXV.
[310.] SECTIO SEPTIMA Continens Propoſit. XXXVIII. XXXIX. & XXXX. PROPOSITIO XXXVIII.
< >
page |< < (308) of 458 > >|
347308Apollonij Pergęi ius eſt quadrato N O, & qua-
407[Figure 407] dratum S T maius quadrato V
X ;
ideoquè quando axis A C
maior eſt, quàm Q R, crit dia-
meter I L maior eius coniugata
N O, &
S T maior quàm V X.
Pari ratione, quandò axis A C
minor eſt, quàm Q R erit H A
minor, quàm A G, &
H E mi-
nor, quàm E G, atque H M mi-
nor, quàm M G :
& propterea
in ſecunda hyperbola, &
ſecun-
da ellipſi etiam diameter I L
minor erit, quàm N O, &
S T
minor erit quàm V X.
Idem,
contingit in reliquis diametris,
dummodò in ellipſi cadant inter
A, &
a, nam a b eſt ęqualis
ſuę coniugatę e d:
& vltra pũ-
ctum a ad partes Q diametri
cadentes minores ſunt ſuis coniugatis in prima ellipſi, &
maiores in ſecunda,
cum propinquiores ſint axi Q R.
Si verò fuerit vnus duorum axium in hyperbola aut ellipſi maior, tunc
11a eius homologa diameter coniugata maior eſt, &
c. Non nulla in hoc texta
deficiunt;
non enim omnes diametri in ellipſi ſunt inęquales vt in Lemmate I.
oſtenſum eſt, & ideo textus corrigi debuit.
Notę in Propoſit. XXI.
ET conuenient duo puncta H, & G in puncto D ; eritque A C ad Q
22b R, vt A D ad ſe ipſam, ſiue vt A C ad ſe ipſam, &
c. Quia qua-
408[Figure 408] dratum A C ad quadratum Q R eſt
vt C G ad G A, &
vt quadratum,
33Defin. 1.
Prop. 7.
huius.
I L ad quadratum N O, ita eſt H E
ad E G, nec non quadratum S T ad
quadratum V X eſt vt H M ad M G;
ſed quandò axium quadrata ſunt inter
ſe ęqualia, tunc quidem pręſecta C G,
ſeu H A ęqualis eſt interceptę G A, &

terminus G, ſeu H cadit in cẽtro D;
&
ideo H E vel D E ęqualis eſt E G vel
E D :
pariterq; H M ęqualis eſt M G:
quarè coniugatarũ diametrorũ quadra-
ta ęqualia ſunt inter ſe;
& etiã tranſ-
uer ſa latera ſuis erectis ęqualia erunt.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index