Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of figures

< >
[Figure 251]
[Figure 252]
[Figure 253]
[Figure 254]
[Figure 255]
[Figure 256]
[Figure 257]
[Figure 258]
[Figure 259]
[Figure 260]
[Figure 261]
[Figure 262]
[Figure 263]
[Figure 264]
[Figure 265]
[Figure 266]
[Figure 267]
[Figure 268]
[Figure 269]
[Figure 270]
[Figure 271]
[Figure 272]
[Figure 273]
[Figure 274]
[275] Cc 2
[Figure 276]
[Figure 277]
[Figure 278]
[Figure 279]
[Figure 280]
< >
page |< < (313) of 458 > >|
352313Conicor. Lib. VII. 416[Figure 416]
Notæ in Propoſit. XXIV.
I Gitur erectum ipſius A C mi-
417[Figure 417]11h nus eſt in prima, &
maius in-
ſecunda, quàm I L, &
ſic oſten-
detur, quod erectum ipſius I L ma-
ius ſit, ſiue minus quàm erectum.
S T, & c. Quoniam in prima ellipſi
rectangulum C A F minus eſt rectan-
22Pro p. 28.
h uius.
gulo L I K;
ergo A C ad I L mino-
rem proportionem habet reciproce, quã
I @ ad A F;
quare I K ad aliquam
aliam quantitatem maiorem, quàm.
A F eandem proportionem habebit,
quàm A C ad I L;
eſtquè A C maior
quàm I L in prima ellipſi;
ergo multò
magis I K maior erit quàm A F.
Pari ratione in eadem prima ellipſi rectan-
gulum L I K minus eſt rectangulo T S Z, &
I L axi maiori propinquior ma-
ior eſt, quàm S T;
ergo S Z maior erit, quàm I K.
E contra in ſecunda ellipſi rectangulum L I K minus erit rectangulo C A F;
33Ibidem.& rectangulum T S Z minus erit rectangulo L I K; eſtquè T S maior quàm
I L, &
I L maior, quàm A C; igitur reciprocè A F maior erit, quàm I K,
&
I K maior, quàm S Z.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index