Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

List of thumbnails

< >
301
301 (263)
302
302 (264)
303
303 (265)
304
304 (266)
305
305 (267)
306
306 (268)
307
307 (269)
308
308 (270)
309
309 (271)
310
310 (272)
< >
page |< < (353) of 458 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div1045" type="section" level="1" n="332">
          <p style="it">
            <s xml:id="echoid-s12250" xml:space="preserve">
              <pb o="353" file="0391" n="392" rhead="Conicor. Lib. VII."/>
            minorem proportionem habebit, quàm rectangulum E H A ad duo quadrata
              <lb/>
            ex G E, & </s>
            <s xml:id="echoid-s12251" xml:space="preserve">ex E H, ſen quàm quadratum A C ad duo quadrata ex I L, & </s>
            <s xml:id="echoid-s12252" xml:space="preserve">
              <lb/>
              <note position="right" xlink:label="note-0391-01" xlink:href="note-0391-01a" xml:space="preserve">17. huíus.</note>
            ex I K: </s>
            <s xml:id="echoid-s12253" xml:space="preserve">igitur duo quadrata ex P Q, & </s>
            <s xml:id="echoid-s12254" xml:space="preserve">ex\P R maiora ſunt duobus quadra-
              <lb/>
            tis ex I L, & </s>
            <s xml:id="echoid-s12255" xml:space="preserve">ex I K, quod erat oſtendendum.</s>
            <s xml:id="echoid-s12256" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div1050" type="section" level="1" n="333">
          <head xml:id="echoid-head412" xml:space="preserve">Notæ in Propoſit. XXXXI.</head>
          <p style="it">
            <s xml:id="echoid-s12257" xml:space="preserve">IN ellypſi, cuius axis maior A C, quia rectangulum A H E ad quadratum
              <lb/>
            H G eſt, vt quadratum A C ad quadratum ex L I K, vel ad quadratum
              <lb/>
              <note position="right" xlink:label="note-0391-02" xlink:href="note-0391-02a" xml:space="preserve">Prop. 16.
                <lb/>
              huius.</note>
            ex C A F, atq; </s>
            <s xml:id="echoid-s12258" xml:space="preserve">quadratum ex G H ad rectangulum A H M eandem proportio-
              <lb/>
              <figure xlink:label="fig-0391-01" xlink:href="fig-0391-01a" number="463">
                <image file="0391-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/xxxxxxxx/figures/0391-01"/>
              </figure>
            nem habet, quàm quadratum ex Q P R ad quadratum A C, igitur ex æquali
              <lb/>
            perturbata rectangulum A H E maius ad minus rectangulum A H M eandem
              <lb/>
            proportionem habet, quàm quadratum ex Q P R ad quadratum ex L I K, vel
              <lb/>
            ad quadratum ex C A F: </s>
            <s xml:id="echoid-s12259" xml:space="preserve">eſtque rectangulum A H E maius rectangulo A H
              <lb/>
            M, ergo quadratũ ex ſumma Q P R maius eſt quadrato ex ſumma L I K, & </s>
            <s xml:id="echoid-s12260" xml:space="preserve">
              <lb/>
            propterea linearũ sũma Q P R maior erit, quàm sũma L I K, vel quàm </s>
          </p>
        </div>
      </text>
    </echo>