Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of contents

< >
[331.] LEMMA XIV.
[332.] LEMMA XV.
[333.] Notæ in Propoſit. XXXXI.
[334.] Notæ in Propoſit. XXXXVII.
[335.] Notæ in Propoſit. XXXXVIII.
[336.] SECTIO DECIMA Continens Propoſit. XXXXIX. XXXXX. & XXXXXI.
[337.] In Sectionem X. Propoſit. XXXXIX. XXXXX. & XXXXXI. LEMMA XVI.
[338.] LEMMA XVII.
[339.] LEMMA XVIII.
[340.] Notæ in Propoſit. XXXXIX.
[341.] Notæ in Propoſit. XXXXX.
[342.] Notæ in Propoſit. XXXXXI.
[343.] SECTIO VNDECIMA Continens Propoſit. XXXII. & XXXI. Apollonij.
[344.] Notæ in Propoſit. XXXI. & XXXII.
[345.] LIBRI SEPTIMI FINIS.
[346.] LIBER ASSVMPTORVM INTERPRETE THEBIT BEN-KORA EXPONENTE AL MOCHT ASSO Ex Codice Arabico manuſcripto SERENISS. MAGNI DV CIS ETRVRIÆ, ABRAHAMVS ECCHELLENSIS Latinè vertit. IO: ALFONSVS BORELLVS Notis Illuſtrauit.
[347.] Præfatio ad Lectorem.
[348.] MISERICORDIS MISERATORIS CVIVS OPEM IMPLORAMVS. LIBER ASSVMPTORVM ARCHIMEDIS, INTERPRETE THEBIT BEN-KORA, Et exponente Doctore ALMOCHTASSO ABILHASAN, Halì Ben-Ahmad Noſuenſi. PROPOSITIONES SEXDECIM.
[349.] PROPOSITIO I.
[350.] SCHOLIVM ALMOCHTASSO.
[351.] Notæ in Propoſit. I.
[352.] PROPOSITIO II.
[353.] SCHOLIVM ALMOCHTASSO.
[354.] Notæ in Propoſ. II.
[355.] PROPOSITIO III.
[356.] Notæ in Propoſit. III.
[357.] PROPOSITIO IV.
[358.] Notæ in Propoſit. IV.
[359.] PROPOSITIO V.
[360.] SCHOLIVM ALMOCHTASSO.
< >
page |< < (360) of 458 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div1066" type="section" level="1" n="336">
          <p>
            <s xml:id="echoid-s12405" xml:space="preserve">
              <pb o="360" file="0398" n="399" rhead="Apollonij Pergæi"/>
            dratorum duorum laterum figuræ eius; </s>
            <s xml:id="echoid-s12406" xml:space="preserve">igitur quadratum A C ad diffe-
              <lb/>
            rentiam quadratorum duorum laterum figuræ I L minorem proportionem
              <lb/>
            habet, in prima ellipſi, & </s>
            <s xml:id="echoid-s12407" xml:space="preserve">maiorem in reliquis, quam ad differentiam
              <lb/>
            quadratorum duorum laterum figuræ A C; </s>
            <s xml:id="echoid-s12408" xml:space="preserve">ergo differentia quadratorum
              <lb/>
            duorum laterum figuræ A C minor eſt in prima ellipſi, & </s>
            <s xml:id="echoid-s12409" xml:space="preserve">maior in cæ-
              <lb/>
            teris, quàm differentia quadratorum duorum laterum figuræ I L. </s>
            <s xml:id="echoid-s12410" xml:space="preserve">Præte-
              <lb/>
            rea M H ad H E minorem proportionem, aut maiorem habet, quàm M
              <lb/>
            G ad G E: </s>
            <s xml:id="echoid-s12411" xml:space="preserve">& </s>
            <s xml:id="echoid-s12412" xml:space="preserve">ponamus in ellipſi Y D æqualem D M, oſtendeturquè
              <lb/>
              <figure xlink:label="fig-0398-01" xlink:href="fig-0398-01a" number="469">
                <image file="0398-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/xxxxxxxx/figures/0398-01"/>
              </figure>
            quod M H in H A minus ſit in prima ellipſi, & </s>
            <s xml:id="echoid-s12413" xml:space="preserve">maior in cæteris, quàm
              <lb/>
            duarum M G, M H ſumma in earum differentiam M Y: </s>
            <s xml:id="echoid-s12414" xml:space="preserve">& </s>
            <s xml:id="echoid-s12415" xml:space="preserve">oſtendetur
              <lb/>
            quemadmodum dictum eſt, quod differentia quadratorum duorum late-
              <lb/>
            rum figuræ I L maior eſt, quàm differentia quadratorum duorum late-
              <lb/>
            rum figuræ P Q.</s>
            <s xml:id="echoid-s12416" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s12417" xml:space="preserve">Deinde in hyperbola ponamus I K erectum ipſius I L, erit differentia
              <lb/>
            quadratorum duarum I L, I K (quæ eſt æqualis K L in ſummam L I, I
              <lb/>
            K) maior illa, quàm I L in L K, quod eſt æquale differentiæ quadrari
              <lb/>
            I L, & </s>
            <s xml:id="echoid-s12418" xml:space="preserve">eius figuræ, nempe differentiæ quadrati A C, & </s>
            <s xml:id="echoid-s12419" xml:space="preserve">eius figuræ
              <lb/>
            (29. </s>
            <s xml:id="echoid-s12420" xml:space="preserve">ex 7.) </s>
            <s xml:id="echoid-s12421" xml:space="preserve">& </s>
            <s xml:id="echoid-s12422" xml:space="preserve">non eſt maior in prima, quàm duplum, & </s>
            <s xml:id="echoid-s12423" xml:space="preserve">in ſecunda ma-
              <lb/>
            ior duplo, & </s>
            <s xml:id="echoid-s12424" xml:space="preserve">hoc eſt propoſitum.</s>
            <s xml:id="echoid-s12425" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>