Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of contents

< >
[321.] In Sectionem VIII. Propoſit. XXXXIIII. XXXXV. & XXXXVI. LEMM A.X.
[322.] LEMM A XI.
[323.] LEMM A XII.
[324.] Notæ in Propoſit. XXXXIV. & XXXXV.
[325.] Notæ in Propoſit. XXXXVI.
[326.] SECTIO NONA Continens Propoſit. XXXXI. XXXXVII. & XXXXVIII.
[327.] PROPOSITIO XXXXI.
[328.] PROPOSITIO XXXXVII.
[329.] PROPOSITIO XXXXVIII.
[330.] In Sectionem IX. Propoſit. XXXXI. XXXXVII. & XXXXVIII. LEMMA. XIII.
[331.] LEMMA XIV.
[332.] LEMMA XV.
[333.] Notæ in Propoſit. XXXXI.
[334.] Notæ in Propoſit. XXXXVII.
[335.] Notæ in Propoſit. XXXXVIII.
[336.] SECTIO DECIMA Continens Propoſit. XXXXIX. XXXXX. & XXXXXI.
[337.] In Sectionem X. Propoſit. XXXXIX. XXXXX. & XXXXXI. LEMMA XVI.
[338.] LEMMA XVII.
[339.] LEMMA XVIII.
[340.] Notæ in Propoſit. XXXXIX.
[341.] Notæ in Propoſit. XXXXX.
[342.] Notæ in Propoſit. XXXXXI.
[343.] SECTIO VNDECIMA Continens Propoſit. XXXII. & XXXI. Apollonij.
[344.] Notæ in Propoſit. XXXI. & XXXII.
[345.] LIBRI SEPTIMI FINIS.
[346.] LIBER ASSVMPTORVM INTERPRETE THEBIT BEN-KORA EXPONENTE AL MOCHT ASSO Ex Codice Arabico manuſcripto SERENISS. MAGNI DV CIS ETRVRIÆ, ABRAHAMVS ECCHELLENSIS Latinè vertit. IO: ALFONSVS BORELLVS Notis Illuſtrauit.
[347.] Præfatio ad Lectorem.
[348.] MISERICORDIS MISERATORIS CVIVS OPEM IMPLORAMVS. LIBER ASSVMPTORVM ARCHIMEDIS, INTERPRETE THEBIT BEN-KORA, Et exponente Doctore ALMOCHTASSO ABILHASAN, Halì Ben-Ahmad Noſuenſi. PROPOSITIONES SEXDECIM.
[349.] PROPOSITIO I.
[350.] SCHOLIVM ALMOCHTASSO.
< >
page |< < (370) of 458 > >|
409370Apollonij Pergæi tum E H, E G in ſuum exceſſum ad aggregatum H A, E G in ſuum ex-
ceſſum æqualis exceſſui duorum quadratorum E H, E G, nempe qua-
dratum A C ad exceſſum quadratorum duorum laterum figuræ I L mi-
nor in prima ellypſi, &
maior in ſecunda, quàm quadratum A H ad ag-
gregatum H A, A G in eorum exceſſu æqualis, &
c. Hæc omnia corrigi
debuiſſe nemo negabit, atque hinc manifeſtum eſt non pauca in textu arabico
deſiderari, cum propoſitio 51, vera non ſit abſque determinationibus ſuperius
expoſitis.
SECTIO VNDECIMA
Continens Propoſit. XXXII. & XXXI.
Apollonij.
IN ellypſi, & ſectionibus coniugatis parallelogrammum ſub
11a axibus contentum æquale eſt parallelogrammo à quibuſcun-
que duabus coniugatis diametris comprehenſo, ſi eorum anguli
æquales fuerint angulis ad centrum contentis à coniugatis dia-
metris.
Sint duo axes A B, C D in ellipſi A C
482[Figure 482] B D, ſiue in ſectionibus coniugatis A, B,
C, D, &
ſint F G, I H aliæ duæ coniu-
gatæ diametri, &
ducantur per puncta F,
I, G, H, lìneæ tangentes coniſectiones,
quæ ſibi mutuo occurrant ad puncta K, L,
M, N:
& producatur A B ex vtraque
parte vſque ad tangentes, eaſque ſecet in
O, P, &
ſit centrum E. Dico quod A
B in C D æquale eſt ſpatio parallelogram-
mo M K:
ſit itaque F R perpendicularis
ad A B;
& ponamus S R mediam propor-
tionalem inter O R, R E.
Et quia quadratum A E ad quadratum
E C eandem proportionem habet, quàm
22b O R in R E, nempe quàm quadratum S
R ad quadratum F R (37.
ex 1.) erit A E
ad E C nempe quadratum A E ad A E in
E C, vt S R ad F R, nempe S R in O E
ad F R in O E, &
permutando erit qua-
dratum A E, nempe R E in O E (39.
ex 1.)

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index