Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of figures

< >
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
[Figure 101]
[Figure 102]
[Figure 103]
[Figure 104]
[Figure 105]
[Figure 106]
[Figure 107]
[Figure 108]
[Figure 109]
[Figure 110]
< >
page |< < (3) of 458 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div30" type="section" level="1" n="28">
          <pb o="3" file="0041" n="41" rhead="Conicor. Lib. V."/>
        </div>
        <div xml:id="echoid-div31" type="section" level="1" n="29">
          <head xml:id="echoid-head51" xml:space="preserve">NOTÆ.</head>
          <p style="it">
            <s xml:id="echoid-s771" xml:space="preserve">HAE definitiones non ſunt Apollonij, ſed Interpretis Arabici, qui in proe-
              <lb/>
            mio huius operis apertè ait, addidiſſe plurimas definitiones in libris Apol-
              <lb/>
            lonij, quibus theoremata breuiſsimè propo-
              <lb/>
              <figure xlink:label="fig-0041-01" xlink:href="fig-0041-01a" number="1">
                <image file="0041-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/xxxxxxxx/figures/0041-01"/>
              </figure>
            ni poſſe profitetur, vt in prioribus quatuor
              <lb/>
            libris videre eſt. </s>
            <s xml:id="echoid-s772" xml:space="preserve">Eas autem exemplis illu-
              <lb/>
            ſtrare conabor.</s>
            <s xml:id="echoid-s773" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s774" xml:space="preserve">I. </s>
            <s xml:id="echoid-s775" xml:space="preserve">Sit quælibet coni ſectio A B C, cuius
              <lb/>
            axis B D, & </s>
            <s xml:id="echoid-s776" xml:space="preserve">in eo ſumatur quodlibet pun-
              <lb/>
            ctum D intrà ſectionem, à quo educantur
              <lb/>
            rectæ lineæ D A, D E, D F, D C vſque ad
              <lb/>
            ſectionem. </s>
            <s xml:id="echoid-s777" xml:space="preserve">Tùnc vocatnr punctum D, Origo.</s>
            <s xml:id="echoid-s778" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s779" xml:space="preserve">II. </s>
            <s xml:id="echoid-s780" xml:space="preserve">Et lineæ D A, D E, & </s>
            <s xml:id="echoid-s781" xml:space="preserve">cæteræ vo-
              <lb/>
            cantur, Rami.</s>
            <s xml:id="echoid-s782" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s783" xml:space="preserve">III. </s>
            <s xml:id="echoid-s784" xml:space="preserve">Portio verò axis B D intèr origi-
              <lb/>
            nem D, & </s>
            <s xml:id="echoid-s785" xml:space="preserve">verticem B interpoſita vocatur
              <lb/>
            Menſura. </s>
            <s xml:id="echoid-s786" xml:space="preserve">Sed in ellipſi A B C G, ſi axis
              <lb/>
            portiones D B, & </s>
            <s xml:id="echoid-s787" xml:space="preserve">D G inæquales fuerint,
              <lb/>
            tantummodò minor portio B D vocatur Mẽ-
              <lb/>
            ſura, non autem maior D G.</s>
            <s xml:id="echoid-s788" xml:space="preserve"/>
          </p>
          <figure number="2">
            <image file="0041-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/xxxxxxxx/figures/0041-02"/>
          </figure>
          <p style="it">
            <s xml:id="echoid-s789" xml:space="preserve">IV. </s>
            <s xml:id="echoid-s790" xml:space="preserve">Sit poſteà recta B I ſemiſsis lateris
              <lb/>
            recti B H iam ſi menſura D B æqualis fue-
              <lb/>
            rit ſemierecto B I, vocatur D B, Menfura
              <lb/>
            comparata.</s>
            <s xml:id="echoid-s791" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s792" xml:space="preserve">V. </s>
            <s xml:id="echoid-s793" xml:space="preserve">At ſi à terminis ramorum A, E, F
              <lb/>
            C educantur ad axim perpendiculares A K,
              <lb/>
            E L, F M, C N, ipſum ſecantes in K, L,
              <lb/>
            M, N vocantur illærectæ lineæ Potentes illo-
              <lb/>
            rum ramorum.</s>
            <s xml:id="echoid-s794" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s795" xml:space="preserve">VI. </s>
            <s xml:id="echoid-s796" xml:space="preserve">Recta verò K B vocatur Abſciſſa
              <lb/>
            rami D A, & </s>
            <s xml:id="echoid-s797" xml:space="preserve">L B Abſciſſa rami D E, & </s>
            <s xml:id="echoid-s798" xml:space="preserve">
              <lb/>
            ſic reliquæ omnes.</s>
            <s xml:id="echoid-s799" xml:space="preserve"/>
          </p>
          <figure number="3">
            <image file="0041-03" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/xxxxxxxx/figures/0041-03"/>
          </figure>
          <p style="it">
            <s xml:id="echoid-s800" xml:space="preserve">VII. </s>
            <s xml:id="echoid-s801" xml:space="preserve">Sit poſteà O centrum ſectionis, iam
              <lb/>
            axis portio ex centro O vſquè ad potentia-
              <lb/>
            lem A K educta, ſcilicet O K vocatur In-
              <lb/>
            uerſa rami D A, pariterque O M eſt Inuer-
              <lb/>
            ſa rami D F.</s>
            <s xml:id="echoid-s802" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s803" xml:space="preserve">VIII. </s>
            <s xml:id="echoid-s804" xml:space="preserve">Si ponatur recta linea B P ad
              <lb/>
            axim perpendicularis, quæ in hyperbola
              <lb/>
            fiat æqualis aggregato, in ellipſi verò fiat
              <lb/>
            æqualis differentiæ laterum recti B H, & </s>
            <s xml:id="echoid-s805" xml:space="preserve">
              <lb/>
            tranſuerſi G B, tunc rectangulum contentum
              <lb/>
            ſub G B, & </s>
            <s xml:id="echoid-s806" xml:space="preserve">B P vocatur, Figura comparata.</s>
            <s xml:id="echoid-s807" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s808" xml:space="preserve">IX. </s>
            <s xml:id="echoid-s809" xml:space="preserve">Poſteà ſi, vt G B ad B P ità ſiat </s>
          </p>
        </div>
      </text>
    </echo>