Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Page concordance

< >
Scan Original
381 342
382 343
383 344
384 345
385 346
386 347
387 348
388 349
389 350
390 351
391 352
392 353
393 354
394 355
395 356
396 357
397 358
398 359
399 360
400 361
401 362
402 363
403 364
404 365
405 366
406 367
407 368
408 369
409 370
410 371
< >
page |< < (386) of 458 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div1106" type="section" level="1" n="348">
          <pb o="386" file="0424" n="425" rhead="Archimedis"/>
        </div>
        <div xml:id="echoid-div1107" type="section" level="1" n="349">
          <head xml:id="echoid-head441" xml:space="preserve">PROPOSITIO I.</head>
          <p>
            <s xml:id="echoid-s12929" xml:space="preserve">SI mutuo ſe tangant duo circuli, vt duo circuli A E B, C E
              <lb/>
            D in E, fuerintque eorum diametri parallelæ, vt ſunt duæ
              <lb/>
            diametri A B, C D, & </s>
            <s xml:id="echoid-s12930" xml:space="preserve">iungantur duo puncta B, D, & </s>
            <s xml:id="echoid-s12931" xml:space="preserve">conta-
              <lb/>
            ctus E [lineis] D E, B D, erit linea B E recta.</s>
            <s xml:id="echoid-s12932" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s12933" xml:space="preserve">Sint duo centra G, F, & </s>
            <s xml:id="echoid-s12934" xml:space="preserve">iunga-
              <lb/>
              <figure xlink:label="fig-0424-01" xlink:href="fig-0424-01a" number="487">
                <image file="0424-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/xxxxxxxx/figures/0424-01"/>
              </figure>
            mus G F, & </s>
            <s xml:id="echoid-s12935" xml:space="preserve">producamus ad E, & </s>
            <s xml:id="echoid-s12936" xml:space="preserve">
              <lb/>
            educamus D H parallelam ipſi G F.
              <lb/>
            </s>
            <s xml:id="echoid-s12937" xml:space="preserve">Et quia H F æqualis eſt ipſi G D,
              <lb/>
            ſuntque G D, E G æquales, ergo
              <lb/>
            ex æqualibus F B, F E remanebunt
              <lb/>
            G F, nempe D H, & </s>
            <s xml:id="echoid-s12938" xml:space="preserve">H B, quæ
              <lb/>
            erunt æquales, atque duo anguli H
              <lb/>
            D B, H B D æquales. </s>
            <s xml:id="echoid-s12939" xml:space="preserve">Et quia
              <lb/>
            duo anguli E G D, E F B ſunt re-
              <lb/>
            cti, atq; </s>
            <s xml:id="echoid-s12940" xml:space="preserve">duo anguli E G D, D H
              <lb/>
            B ſunt æquales, remanebunt duo
              <lb/>
            anguli G E D, G D E, qui inter ſe, & </s>
            <s xml:id="echoid-s12941" xml:space="preserve">duobus angulis H D B, H B D
              <lb/>
            æquales erunt; </s>
            <s xml:id="echoid-s12942" xml:space="preserve">ergo angulus E D G æqualis eſt angulo D B F, & </s>
            <s xml:id="echoid-s12943" xml:space="preserve">com-
              <lb/>
            prehenſus angulus G D B eſt communis, ergo erunt duo anguli G D B,
              <lb/>
            F B D (qui ſunt pares duobus rectis) æquales duobus angulis G D B,
              <lb/>
            G D E: </s>
            <s xml:id="echoid-s12944" xml:space="preserve">igitur ipſi quoque ſunt æquales duobus rectis, ergo linea E D
              <lb/>
            B eſt recta, & </s>
            <s xml:id="echoid-s12945" xml:space="preserve">hoc eſt, quod voluimus.</s>
            <s xml:id="echoid-s12946" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div1109" type="section" level="1" n="350">
          <head xml:id="echoid-head442" xml:space="preserve">SCHOLIVM ALMOCHTASSO.</head>
          <p>
            <s xml:id="echoid-s12947" xml:space="preserve">DIcit Doctor; </s>
            <s xml:id="echoid-s12948" xml:space="preserve">Et quidem dici poteſt cum duo anguli H D B, H B
              <lb/>
            D ſint æquales, & </s>
            <s xml:id="echoid-s12949" xml:space="preserve">angulus D H B rectus, quod erit angulus B D
              <lb/>
            H ſemirectus, & </s>
            <s xml:id="echoid-s12950" xml:space="preserve">ſimiliter angulus E D G, & </s>
            <s xml:id="echoid-s12951" xml:space="preserve">angulus G D H rectus,
              <lb/>
            ergo tres anguli ſunt æquales duobus rectis, igitur linea E D B eſt re-
              <lb/>
            cta. </s>
            <s xml:id="echoid-s12952" xml:space="preserve">Idem ſequitur, ſi illi duo circuli ſe mutuo exterius contigerint.</s>
            <s xml:id="echoid-s12953" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div1110" type="section" level="1" n="351">
          <head xml:id="echoid-head443" xml:space="preserve">Notæ in Propoſit. I.</head>
          <p style="it">
            <s xml:id="echoid-s12954" xml:space="preserve">HAEc eſt vna earum Propoſitionum, quas Pappus in quodam libro antiquo
              <lb/>
            reperit, qui, vt deduximus ex Eutocio, ab Archimede conſcriptus diu
              <lb/>
            apud Arabes latuit. </s>
            <s xml:id="echoid-s12955" xml:space="preserve">Hæc aſſumitur in propoſit. </s>
            <s xml:id="echoid-s12956" xml:space="preserve">14. </s>
            <s xml:id="echoid-s12957" xml:space="preserve">lib. </s>
            <s xml:id="echoid-s12958" xml:space="preserve">4. </s>
            <s xml:id="echoid-s12959" xml:space="preserve">Collect. </s>
            <s xml:id="echoid-s12960" xml:space="preserve">Pappi, eam-
              <lb/>
            que ſupplet Commandinus, ſed extat expreſſe lib. </s>
            <s xml:id="echoid-s12961" xml:space="preserve">7. </s>
            <s xml:id="echoid-s12962" xml:space="preserve">propoſit. </s>
            <s xml:id="echoid-s12963" xml:space="preserve">110. </s>
            <s xml:id="echoid-s12964" xml:space="preserve">eiuſdem
              <lb/>
            Pappi, eſtque demonſtratio vniuer ſaliſſima comprehendens caſum neglectum
              <lb/>
            in hac demonſtratione, ſcilicet quando duo circuli ſeſe exterius contingunt, &</s>
            <s xml:id="echoid-s12965" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>