Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

List of thumbnails

< >
441
441 (402)
442
442 (403)
443
443 (404)
444
444 (405)
445
445 (406)
446
446 (407)
447
447 (408)
448
448 (409)
449
449 (410)
450
450 (411)
< >
page |< < (405) of 458 > >|
444405Aſſump. Liber. immo duo anguli A B F, A C F minores ſint duobus angulis A B D,
A C D, totum ſua parte, &
hoc eſt abſurdum, ergo manet propoſitum.
Notæ in Propoſit. XII.
LEmma aſſumptum in demonſtratione huius pulcherrimæ propoſitionis poteſt
directè oſtendi hac ratione.
Si in quadrilatero A C D B duo latera A C, & A B æqualia fuerint, atque
angulus C D B æqualis duobus angulis C, &
B ſimul ſumptis. Dico rectam A
D ipſi A C, vel A B æqualẽ eſſe.
Producatur C A, in E, vt A E fiat æqualis
A B, iungaturque B E.
Quia in triangulo Iſo-
518[Figure 518] ſcelio B A E angulus E æqualis eſt angulo A B
E, &
angulus C D B æqualis eſt duobus angulis
C, &
D B A ſimul ſumptis, ergo duo anguli C D
B, &
E (oppoſiti in quadrilatero C D B E)
æquales ſunt tribus angulis C, D B A, &
A B
E, ſeu duobus angulis C, &
D B E, ſed qua-
tuor anguli quadrilateri E C D B æquales ſunt
quatuor rectis, ergo duo anguli oppoſiti E, C D
B duobus rectis æquales ſunt, &
propterea qua-
drilaterum ipſum circulo inſcribi poteſt, cuius
circuli centrum erit A, cum tres rectæ lineæ
C A, A B, A E æquales poſitæ ſint, &
propte-
rea A D radius quoque circuli erit æqualis ipſi C A.
PROPOSITIO XIII.
SI mutuo ſe ſecent duæ lineæ A B, C D in circulo, & fue-
rit A B diameter illius, at non C D, &
educantur ex duo-
bus punctis A, B duæ per-
519[Figure 519] pendiculares ad C D, quæ
ſint A E, B F, vtique ab-
ſcindent ex illa C F, D E
æquales.
Iungamus E B, & educamus
ex I, quod eſt centrum, per-
pendicularem I G ſuper C D,
&
producamus eam ad H in E
B.
Et quia I G eſt perpendicu-
laris ex centro ad C D illam bi-
fariam diuidet in G, &
quia I
G, A E ſunt duæ perpendicu-
lares ſuper illam, erunt

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index