6830Apollonij Pergæi
NOTÆ.
EDucamus itaque duas perpendiculares, &
c.
Educamus itaque ex pun-
11a ctis B, G duas G L, B I perpendiculares ad axim ei occurrentes in L, I.
Et LG maior eſt, quàm B I, & c. Subiungo: Eo quod potentialis G L ma-
22b gis recedit à vertice, quàm B I; ſi iam ducatur B M parallela axi in parabola,
& ex centro educta in reliquis ſectionibus, ſecans G L in M, coniungaturque H
M, erit in parabola M L minor quàm G L, & æqualis B I, & ideo angulus M
H L minor erit angulo G H L, & æqualis angulo F, & propterea angulus F mi-
nor eſt, quàm G H L.
45[Figure 45]11a ctis B, G duas G L, B I perpendiculares ad axim ei occurrentes in L, I.
Et LG maior eſt, quàm B I, & c. Subiungo: Eo quod potentialis G L ma-
22b gis recedit à vertice, quàm B I; ſi iam ducatur B M parallela axi in parabola,
& ex centro educta in reliquis ſectionibus, ſecans G L in M, coniungaturque H
M, erit in parabola M L minor quàm G L, & æqualis B I, & ideo angulus M
H L minor erit angulo G H L, & æqualis angulo F, & propterea angulus F mi-
nor eſt, quàm G H L.
Si verò ſectio fuerit hyperbole, aut ellipſis, &
c.
Addo:
Manifeſtum eſt
3331. lib. I.44C rectam B D ex centro ductam ſectionem ſecare in B, & propterea occurrere po-
tentiali G L à vertice remotiori, quàm B I inter puncta G, & L, & erit F I,
& cætera.
3331. lib. I.44C rectam B D ex centro ductam ſectionem ſecare in B, & propterea occurrere po-
tentiali G L à vertice remotiori, quàm B I inter puncta G, & L, & erit F I,
& cætera.
Erit ID ad LD, nempe B I ad M L, &
c.
Addo (propter parallelas B I,
55d M L, & ſimilitudincm triangulorum D B I, & D M L.)
55d M L, & ſimilitudincm triangulorum D B I, & D M L.)