7739Conicor. Lib. V.
PROPOSITIO LIV. LV.
ITaque oſtenſum eſt, vti memorauimus, quod ex concurſu
duarum breuiſſimarum ad coniſectionem non egrediatur alia
11a breuiſecans præter illas duas, & quod reliqui rami ex eorum
concurſu educti ad ſectionem habent proprietates ſuperiùs ex-
poſitas.
duarum breuiſſimarum ad coniſectionem non egrediatur alia
11a breuiſecans præter illas duas, & quod reliqui rami ex eorum
concurſu educti ad ſectionem habent proprietates ſuperiùs ex-
poſitas.
PROPOSITIO LVI.
In ellipſi ramorum, ſecantium vtrumque axim, à concurſu vl-
tra centrum poſito egredientium, vnius tantum portio, inter
axim maiorem, & ſectionem intercepta, erit linea breuiſsima,
22a ſiue menſura ipſam comparatam, nec non perpendicularis ipſam
trutinam ſuperet, æquet, vel ab ea deficiat.
tra centrum poſito egredientium, vnius tantum portio, inter
axim maiorem, & ſectionem intercepta, erit linea breuiſsima,
22a ſiue menſura ipſam comparatam, nec non perpendicularis ipſam
trutinam ſuperet, æquet, vel ab ea deficiat.
SIt ſectio ellipſis A C B, &
axis maior tranſuerſus A B perpendicularis
E F, centrum D, & ponamus D G ad G F, vt proportio figuræ, & ſi-
33b militer E H ad H F, & producamus per H rectam I H K parallelam ipſi A B,
& per G rectã I G L ipſi
53[Figure 53] E F, quæ ſibi occurrant
in I, & ducamus per
44c punctum E ſectionem
554. lib. 2 hyperbolen E M C cir-
ca duas eius continen-
tes L I, I K, quæ oc-
curret ſectioni A C B
ellipticæ, quia I L, I K
ſunt duæ cõtinentes ſe-
ctionem E M C, & pro-
portio E H ad H F po-
ſita eſt, vt D G ad G F;
66d ergo E H prima proportionalium in H I, nempe G F quartam, æquale
eſt D G ſecundæ in I G, nempe F H tertiam; ergo punctum M eſt in il-
lius diametro, & propterea ſectio hyperbole E M C tranſit per centrum
ſectionis ellipſis A C B; quare duæ ſectiones ſe inuicem ſecant, ſitque
concurſus in C, & producamus per E, C lineam occurrentem duabus con-
77e tinentibus ſectionem in L, K, & producamus duas perpendiculares C N,
K O ſuper A B. Et quia K C, L E ſunt æquales (16. exſecundo) erit G F
888. lib. 2. æqualis O N; quare F O æqualis eſt ipſi G N; atque E H ad H F, nempe
99f E K ad K P, ſeu F O (quæ eſt æqualis ipſi G N) ad O P eandem propor-
tionem habet, quàm D G ad G F, quę eſt ęqualis ipſi O N, & ideo G N
ad O P eſt, vt D G ad O N, & comparando homologum differentias D N
1010Lem. 3.
E F, centrum D, & ponamus D G ad G F, vt proportio figuræ, & ſi-
33b militer E H ad H F, & producamus per H rectam I H K parallelam ipſi A B,
& per G rectã I G L ipſi
53[Figure 53] E F, quæ ſibi occurrant
in I, & ducamus per
44c punctum E ſectionem
554. lib. 2 hyperbolen E M C cir-
ca duas eius continen-
tes L I, I K, quæ oc-
curret ſectioni A C B
ellipticæ, quia I L, I K
ſunt duæ cõtinentes ſe-
ctionem E M C, & pro-
portio E H ad H F po-
ſita eſt, vt D G ad G F;
66d ergo E H prima proportionalium in H I, nempe G F quartam, æquale
eſt D G ſecundæ in I G, nempe F H tertiam; ergo punctum M eſt in il-
lius diametro, & propterea ſectio hyperbole E M C tranſit per centrum
ſectionis ellipſis A C B; quare duæ ſectiones ſe inuicem ſecant, ſitque
concurſus in C, & producamus per E, C lineam occurrentem duabus con-
77e tinentibus ſectionem in L, K, & producamus duas perpendiculares C N,
K O ſuper A B. Et quia K C, L E ſunt æquales (16. exſecundo) erit G F
888. lib. 2. æqualis O N; quare F O æqualis eſt ipſi G N; atque E H ad H F, nempe
99f E K ad K P, ſeu F O (quæ eſt æqualis ipſi G N) ad O P eandem propor-
tionem habet, quàm D G ad G F, quę eſt ęqualis ipſi O N, & ideo G N
ad O P eſt, vt D G ad O N, & comparando homologum differentias D N
1010Lem. 3.