Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Page concordance

< >
Scan Original
111 73
112 74
113 75
114 76
115 77
116 78
117 79
118 80
119 81
120 82
121 83
122 84
123 85
124 86
125 87
126 88
127 89
128 90
129 91
130 92
131 93
132 94
133 95
134 96
135 97
136 98
137 99
138 100
139 101
140 102
< >
page |< < (50) of 458 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div208" type="section" level="1" n="73">
          <p style="it">
            <s xml:id="echoid-s2339" xml:space="preserve">
              <pb o="50" file="0088" n="88" rhead="Apollonij Pergæi"/>
            K G eandem propor-
              <lb/>
            tionem habebit ad R
              <lb/>
              <figure xlink:label="fig-0088-01" xlink:href="fig-0088-01a" number="65">
                <image file="0088-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/xxxxxxxx/figures/0088-01"/>
              </figure>
            G, atque ad M K,
              <lb/>
            vnde R G æqualis e-
              <lb/>
            rit M K, vel F D,
              <lb/>
            quare eadem E I ad
              <lb/>
            K M, vel C D ad
              <lb/>
            D F, ſiue I C ad C
              <lb/>
            S eandem proportio-
              <lb/>
            nem habebit, quam
              <lb/>
            eadem E I ad R G,
              <lb/>
            vel I T ad B G (pro-
              <lb/>
            pter ſimilitudinem
              <lb/>
            triangulorum I E T,
              <lb/>
            & </s>
            <s xml:id="echoid-s2340" xml:space="preserve">G R B) ergo com-
              <lb/>
            parando homologo-
              <lb/>
            rum ſummas in elli-
              <lb/>
            pſi, vel differentias
              <lb/>
              <note position="left" xlink:label="note-0088-01" xlink:href="note-0088-01a" xml:space="preserve">Lem. 4.</note>
            in hyperbola C T ad
              <lb/>
            B O, vel C H ad H
              <lb/>
            O (propter ſimilitu-
              <lb/>
            dinem triangulorum
              <lb/>
            C H T, & </s>
            <s xml:id="echoid-s2341" xml:space="preserve">O H B)
              <lb/>
            eandem proportionẽ
              <lb/>
            habebit, quàm I C
              <lb/>
            ad C S, vel C D ad
              <lb/>
            D F, & </s>
            <s xml:id="echoid-s2342" xml:space="preserve">diuidendo
              <lb/>
            in hyperbola, & </s>
            <s xml:id="echoid-s2343" xml:space="preserve">cõ-
              <lb/>
            ponendo in ellipſi C O ad O H eandem proportionem habebit, quàm C F ad F D,
              <lb/>
            ſiue quàm habet latus tranſuerſum ad rectum; </s>
            <s xml:id="echoid-s2344" xml:space="preserve">& </s>
            <s xml:id="echoid-s2345" xml:space="preserve">propterea B H eſt breuiſsima
              <lb/>
              <note position="left" xlink:label="note-0088-02" xlink:href="note-0088-02a" xml:space="preserve">9. 10.
                <lb/>
              huius.</note>
            linearum ex B ad axim cadentium.</s>
            <s xml:id="echoid-s2346" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s2347" xml:space="preserve">Deinde educatur quilibet ramus E V ſupra, velinfr a breuiſecantem E B, qui
              <lb/>
            productus ſecet rectam I C in X, & </s>
            <s xml:id="echoid-s2348" xml:space="preserve">C A in Z, atque S M in γ, & </s>
            <s xml:id="echoid-s2349" xml:space="preserve">educatur ex
              <lb/>
            V recta V e perpendicularis ad axim, ſecans D F in c, & </s>
            <s xml:id="echoid-s2350" xml:space="preserve">S M in e, atque
              <lb/>
            contingentem ſectionem in puncto B, ſcilicet ipſam B a ſecet in d. </s>
            <s xml:id="echoid-s2351" xml:space="preserve">Et quia (vt
              <lb/>
            modo oſtenſum eſt) rectangulum F S æquale eſt rectangulo B G M, ſuntque pa-
              <lb/>
            riter oſtenſæ O C, A C, C a proportionales; </s>
            <s xml:id="echoid-s2352" xml:space="preserve">ergo C a eſt quinta proportionalis poſt
              <lb/>
            quatuor præcedentes F C, N C, O C, A C continuè proportionales; </s>
            <s xml:id="echoid-s2353" xml:space="preserve">& </s>
            <s xml:id="echoid-s2354" xml:space="preserve">ideo F C ad
              <lb/>
            C O eſt, vt C O ad C a; </s>
            <s xml:id="echoid-s2355" xml:space="preserve">ergo comparando homologorum differentias tam in hyper-
              <lb/>
              <note position="left" xlink:label="note-0088-03" xlink:href="note-0088-03a" xml:space="preserve">Lem. 3.</note>
            bola, quàm in ellipſi erit, F O ad O a, vt F C ad C O: </s>
            <s xml:id="echoid-s2356" xml:space="preserve">eſt autem G B ad B O,
              <lb/>
            vt F C ad C O, vt antea oſtenſum eſt; </s>
            <s xml:id="echoid-s2357" xml:space="preserve">ergo G B ad B O erit, vt F O ad O a; </s>
            <s xml:id="echoid-s2358" xml:space="preserve">ſed
              <lb/>
            propter ſimilitudinem triangulorum B G b, B O a eſt G B ad B O, vt G b ad O a;
              <lb/>
            </s>
            <s xml:id="echoid-s2359" xml:space="preserve">ergo F O, ſeu M G ad O a eandem proportionem habet, quàm G b ad eandem O a; </s>
            <s xml:id="echoid-s2360" xml:space="preserve">
              <lb/>
            & </s>
            <s xml:id="echoid-s2361" xml:space="preserve">propterea M G æqualis eſt G b; </s>
            <s xml:id="echoid-s2362" xml:space="preserve">cumque M b ſecetur æqualiter in G, & </s>
            <s xml:id="echoid-s2363" xml:space="preserve">inæqua-
              <lb/>
            liter in e (ex lemmate 6. </s>
            <s xml:id="echoid-s2364" xml:space="preserve">huius) G b ad e b, ſeu B G, ad d e, propter ſimilitu-
              <lb/>
            dinem triangulorum B G b, & </s>
            <s xml:id="echoid-s2365" xml:space="preserve">B O a, & </s>
            <s xml:id="echoid-s2366" xml:space="preserve">multo magis B G ad V e portionem
              <lb/>
            ipſius d e habebit maiorem proportionem, quàm, e M ad G M; </s>
            <s xml:id="echoid-s2367" xml:space="preserve">ergo </s>
          </p>
        </div>
      </text>
    </echo>