Vitruvius, I Dieci Libri dell' Architettvra di M. Vitrvvio, 1556

Page concordance

< >
Scan Original
1
2
3
4
5
6
7
8
9 5
10 6
11 7
12 8
13 9
14 10
15 11
16 12
17 13
18 14
19 15
20 16
21 17
22 18
23 19
24 20
25
26 21
27
28 22
29 23
30 24
< >
page |< < (101) of 325 > >|
    <echo version="1.0RC">
      <text xml:lang="it" type="free">
        <div xml:id="echoid-div245" type="section" level="1" n="33">
          <pb o="101" file="0107" n="116" rhead="TERZO."/>
          <p style="it">
            <s xml:id="echoid-s9032" xml:space="preserve">Quello che dice Vitr. </s>
            <s xml:id="echoid-s9033" xml:space="preserve">è, che poſte le baſe, ſopra di eſſe ſi deono porre le colonne, ma con diſſegno, & </s>
            <s xml:id="echoid-s9034" xml:space="preserve">leggiadria. </s>
            <s xml:id="echoid-s9035" xml:space="preserve">Delle colonne altre ſono nelle
              <lb/>
            cantonate, altre ſonotra quelle: </s>
            <s xml:id="echoid-s9036" xml:space="preserve">Queste mediane ſi ch@amano da Vit. </s>
            <s xml:id="echoid-s9037" xml:space="preserve">quelle angulari, uuole Vitr. </s>
            <s xml:id="echoid-s9038" xml:space="preserve">che le mezane ſiano dritte à piombo nel lo-
              <lb/>
            ro mezzo collocate, ma quelle de gli anguli ſiano nella parte di dentro piane, & </s>
            <s xml:id="echoid-s9039" xml:space="preserve">ſenza raſtremamento, & </s>
            <s xml:id="echoid-s9040" xml:space="preserve">queſto forſe è ſatto, perche ſcontri-
              <lb/>
            no con gli anguli del parete della cella, & </s>
            <s xml:id="echoid-s9041" xml:space="preserve">dicono queſti oſſeruatori, che rieſcono bene alla uiſta. </s>
            <s xml:id="echoid-s9042" xml:space="preserve">Similmente raſtremate non ſono quelle, che
              <lb/>
            ſono appoggiate al parete dirimpeto alle angulari dico da i lati del parete, perche tanto queſte quanto quelle di dentro uia non hanno con-
              <lb/>
            trattione, ma il loro lato interiore ua dritto à piombo, benche pare che Vit. </s>
            <s xml:id="echoid-s9043" xml:space="preserve">per quelle che uanno dalla deſtra, & </s>
            <s xml:id="echoid-s9044" xml:space="preserve">dalla ſiniſtra nelli lati
              <lb/>
            del tempio, intenda, che ſi debbia porre ſopra le cantonate due colonne una che ſerua alla ſronte, l’ altra al lato del Tempio, ma queſto non
              <lb/>
            ſtimo io che ſia, perche le miſure de i uani non ci ſeruerebbono togliendo lo ſpatio di due colonne ad un lato del Tempio.</s>
            <s xml:id="echoid-s9045" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s9046" xml:space="preserve">Poſti i fuſti delle colonne ſeguita la ragione de i capitelli. </s>
            <s xml:id="echoid-s9047" xml:space="preserve">Queſti ſe ſeranno piumazzati, ſideono ſormar con queſte
              <lb/>
            Simmetrie, che quanto ſerâ groſſa la colonna da piedi aggiuntaui una dieciottaua parte del fuſto da baſſo, tanto ſia
              <lb/>
              <note position="left" xlink:label="note-0107-01" xlink:href="note-0107-01a" xml:space="preserve">10</note>
            longo, & </s>
            <s xml:id="echoid-s9048" xml:space="preserve">largo l’Abaco, ò Dado che ſi dica, ma la groſſezza di quelli cõ la Voluta ſia per la metà, douemo poi retirarſi
              <lb/>
            dall’ eſtremità del Dado nella parte di dentro per far le fronti delle Volute due, & </s>
            <s xml:id="echoid-s9049" xml:space="preserve">mezza di quelle parti, & </s>
            <s xml:id="echoid-s9050" xml:space="preserve">lõgo il da-
              <lb/>
            do da tutte quattro le parti delle Volute appreſſo la quadra dell’eſtremità del dado mandar in giu le linee, che Catheti
              <lb/>
            dette ſono, & </s>
            <s xml:id="echoid-s9051" xml:space="preserve">quella groſſezza del Capitello gia preſa diuidere in noue parti e mezza, una parte e mezza ſia data alla
              <lb/>
            groſſezza del dado, & </s>
            <s xml:id="echoid-s9052" xml:space="preserve">dell’ altre otto faccianſi le Volute. </s>
            <s xml:id="echoid-s9053" xml:space="preserve">Dapoi dalla linea, che longo l’ eſtremità dell’ A baco, o Da-
              <lb/>
            do, all’ingiù ſerà mandata, egli ſi deue ritirare, per una parte e mezza in dentro, & </s>
            <s xml:id="echoid-s9054" xml:space="preserve">mandarne giu un’ altra, indi
              <lb/>
            partite ſiano queſte linee in modo, che quattro parti e mezza laſciate ſiano ſotto il Dado, alhora in quel luogo, che
              <lb/>
            diuide quattro e mezza, & </s>
            <s xml:id="echoid-s9055" xml:space="preserve">tre e mezza, ſegnato ſia il centro dell’occhio, & </s>
            <s xml:id="echoid-s9056" xml:space="preserve">ſu quel centro in giro tirata ſia una cir-
              <lb/>
            conferenza tanto grande in Diametro, quanto è una delle otto parti, quella ſerà per la grandezza dell’ occhio. </s>
            <s xml:id="echoid-s9057" xml:space="preserve">& </s>
            <s xml:id="echoid-s9058" xml:space="preserve">in
              <lb/>
            quella ſia tirato un Diametro, che riſponda al Catheto, poi dal di ſopra ſotto il dado minuito ſia mezzo ſpacio del-
              <lb/>
              <note position="left" xlink:label="note-0107-02" xlink:href="note-0107-02a" xml:space="preserve">20</note>
            l’occhio cominciato in ciaſcuno giro delle quarte, ſin che ſi peruenga ſotto l’iſteſſa quarta, che è ſotto’l Dado, la
              <lb/>
            groſſezza del Capitello coſi farſi deue, che di noue parti è mezza tre parti inanzi pendino ſotto il Tondino della
              <lb/>
            ſommità della colonna, & </s>
            <s xml:id="echoid-s9059" xml:space="preserve">aggiontoui alla gola il reſtante ſi dia al Dado, & </s>
            <s xml:id="echoid-s9060" xml:space="preserve">al Canale, lo ſporto della gola ſia oltra la
              <lb/>
            quarta del Dado per la grandezza dell’occhio.</s>
            <s xml:id="echoid-s9061" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s9062" xml:space="preserve">Sotto il tondino, ouero Aſtragalo, che ſi dica tre parti delle noue e mezza ſi diano, il reſtante delle noue è mezza che ſono ſei, & </s>
            <s xml:id="echoid-s9063" xml:space="preserve">mezza ſi
              <lb/>
            da al Dado al Canale, & </s>
            <s xml:id="echoid-s9064" xml:space="preserve">alla Gola, ò Cimaſa, ma dell’ Abaco ſe ne è detto però dice Vit. </s>
            <s xml:id="echoid-s9065" xml:space="preserve">adempto Abaco, cioè leuatone l’Abaco, del qual hauemo
              <lb/>
            detto, che ſe gli da una parte e mezza, il reſto ſi da al Canale, & </s>
            <s xml:id="echoid-s9066" xml:space="preserve">alla Cimaſa del Dado, e ponendoui il Dado in quel conto, ſtanno bene, & </s>
            <s xml:id="echoid-s9067" xml:space="preserve">
              <lb/>
            non ſi deono mutare, come uogliono alcuni dicendo, adempto Abaco, ma addito Abaco, ſei parti & </s>
            <s xml:id="echoid-s9068" xml:space="preserve">mezza adunque ſi comparteno al Dado,
              <lb/>
            al Canale, & </s>
            <s xml:id="echoid-s9069" xml:space="preserve">alla Cimaſa, una & </s>
            <s xml:id="echoid-s9070" xml:space="preserve">mezza ſe ne da al Dado, una allo Aſtragalo, e Tondino, che tanto quanto la grandezza dell’ occhio, le al-
              <lb/>
            tre quattroſi danno alla Cimaſa, & </s>
            <s xml:id="echoid-s9071" xml:space="preserve">al Canale, itermini del Canale ſono dimoſtrati dal primo giro della Voluta, lo ſporto della Cimaſa ò Go-
              <lb/>
              <note position="left" xlink:label="note-0107-03" xlink:href="note-0107-03a" xml:space="preserve">30</note>
            la è oltra il quadro del dado per la grandezza dell’ occhio.</s>
            <s xml:id="echoid-s9072" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s9073" xml:space="preserve">Le Cinte de i piumazzi habbiano del Dado queſto ſporto, che poſto un piede della ſeſtanel tetrante del Capitello, & </s>
            <s xml:id="echoid-s9074" xml:space="preserve">
              <lb/>
            allargato l’altro alla eſtremità della Cimaſa raggirandoſi tocchi l’eſtreme parti delle cinte.</s>
            <s xml:id="echoid-s9075" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s9076" xml:space="preserve">Queſta è la terza conditione, che proua, che noi hauemo ſatto bene il Capitello, & </s>
            <s xml:id="echoid-s9077" xml:space="preserve">di ſopra noi l’ hauemo ben dimoſtrata, & </s>
            <s xml:id="echoid-s9078" xml:space="preserve">queſto è un de
              <lb/>
            bei pasſi di Vitr. </s>
            <s xml:id="echoid-s9079" xml:space="preserve">ilqual non ci laſſa deſiderio d’ alcuna coſa, & </s>
            <s xml:id="echoid-s9080" xml:space="preserve">però ſeguitando dice.</s>
            <s xml:id="echoid-s9081" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s9082" xml:space="preserve">Gliasſi delle Volute eſſer non deono piu grosſi della grandezza dell’ occhio, & </s>
            <s xml:id="echoid-s9083" xml:space="preserve">le Volute ſiano tagliate in modo, che le
              <lb/>
            altezze habbiano la duodecima parte della loro larghezza. </s>
            <s xml:id="echoid-s9084" xml:space="preserve">Queſte ſeranno le Simmetrie de i capitelli di quelle Co-
              <lb/>
            lonne, che per la meno ſeranno di piedi quindeci, & </s>
            <s xml:id="echoid-s9085" xml:space="preserve">quelle altre, che ſeranno di piu teneranno allo iſteſſo modo la
              <lb/>
            conuenienza delle lor miſure: </s>
            <s xml:id="echoid-s9086" xml:space="preserve">Il Dado ſera lungo, & </s>
            <s xml:id="echoid-s9087" xml:space="preserve">largo quanto è groſſa la colonna da baſſo, aggiuntoui la nona
              <lb/>
            parte, accioche quanto meno la Colonna piu alta hauerà di raſtremamento non meno di quelle il Capitello habbia
              <lb/>
              <note position="left" xlink:label="note-0107-04" xlink:href="note-0107-04a" xml:space="preserve">40</note>
            lo ſporto della ſua Simmetria, & </s>
            <s xml:id="echoid-s9088" xml:space="preserve">nell’altezza l’ aggiunta della rata parte. </s>
            <s xml:id="echoid-s9089" xml:space="preserve">Ma delle deſcrittioni delle Volute come
              <lb/>
            drittamente à ſeſta ſi uoltino, come s’habbiano à diſſegnare, nel fine del libro la forma, & </s>
            <s xml:id="echoid-s9090" xml:space="preserve">la ragione ci ſarà dipinta
              <lb/>
            e dimoſttata.</s>
            <s xml:id="echoid-s9091" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s9092" xml:space="preserve">Aſſe chiama egli quella parte, che è dalla groſſezza dell’ occhio occupata, come ſe egli fuſſe un bastone, che paſſaſſe per lo mezzo del piumazzo, et
              <lb/>
            ſopra eſſo ſi rauolge, ſi come aſſe è quella linea, che da polo à polo trappaſſando per lo cètro ſi stende. </s>
            <s xml:id="echoid-s9093" xml:space="preserve">Queſte ſono le miſure di que capitelli, che
              <lb/>
            uanno ſopra colonne alte quindeci piedi. </s>
            <s xml:id="echoid-s9094" xml:space="preserve">Ma ſe ſuſſero piu alte ſeranno alli capitelli loro date le isteſſe miſure, ueròè, che il Dado ſera largo,
              <lb/>
            & </s>
            <s xml:id="echoid-s9095" xml:space="preserve">longo di piu della groſſezza della colonna per la nona parte, perche eſſendo la colonna maggiore, meno ſirastrema di ſopra, perche lo ae-
              <lb/>
            re per la lontananza fa lo effetto.</s>
            <s xml:id="echoid-s9096" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s9097" xml:space="preserve">Forniti i capitelli, & </s>
            <s xml:id="echoid-s9098" xml:space="preserve">poi poſti ne i ſommi fuſti delle colonne non à dritto liuello, ma ſegondo egual modulo, accioche
              <lb/>
            quella aggiunta che ne i piedeſtalli ſerà ſtata ſatta riſponda ne i membri di ſopra con la ragioneuole miſura de gli ar
              <lb/>
              <note position="left" xlink:label="note-0107-05" xlink:href="note-0107-05a" xml:space="preserve">50</note>
            chitraui.</s>
            <s xml:id="echoid-s9099" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s9100" xml:space="preserve">Voleua (come hauemo ueduto di ſopra) Vit. </s>
            <s xml:id="echoid-s9101" xml:space="preserve">che i Piedeſtalli uſciſſero oltra il Poggio, ma però che di tutti i membrelli del Piedeſtallo riſpondeſ-
              <lb/>
            ſero i membrelli del poggio che piu adentro ſi ritiraua, ilche conſiderando egli auuertiti cirende, che poniamo i capitelli di modo, che riſpondi
              <lb/>
            no cõ le riſalite loro à quelle giunte da baſſo, accioche nell’architraue corriſpondino i membri con la loro ragioneuole miſura alle parti diſotto
              <lb/>
            come per la ſigura dello impiè del Tempio Pſeudodipteros ſi dimoſtra. </s>
            <s xml:id="echoid-s9102" xml:space="preserve">Egli ſi deue in queſto modo pigliar la ragione de gli archi-
              <lb/>
            traui che ſe le colõone ſerãno almeno da dodici ſin quindici piedi l’altezza dello Architraue ſia per la metà della groſ-
              <lb/>
            ſezzadella colõna da piede. </s>
            <s xml:id="echoid-s9103" xml:space="preserve">Se paſſerà da quindici à uenti partita l’ altezza della colõna in parti tredici per una di eſſe
              <lb/>
            ſerà l’altezza dello Architraue. </s>
            <s xml:id="echoid-s9104" xml:space="preserve">Se piu oltre da uenti à uenticinque uſcirà la colonna, diuidaſi l’altezza ſua in parti do
              <lb/>
            dici, e mezza, & </s>
            <s xml:id="echoid-s9105" xml:space="preserve">diuna parte di quelle ſia ſatto l’Architraue nell’altezza ſua. </s>
            <s xml:id="echoid-s9106" xml:space="preserve">Se ſerà da uenticinque à trenta di dodici
              <lb/>
            parti della colõna una ſia per l’altezza dello Architraue, & </s>
            <s xml:id="echoid-s9107" xml:space="preserve">oltra di queſto ſecõdo la rata parte allo iſteſſo modo dalla
              <lb/>
              <note position="left" xlink:label="note-0107-06" xlink:href="note-0107-06a" xml:space="preserve">60</note>
            altezza delle colonne deono eſſer ſpedite le altezze de gli Architraui, perche quanto piu aſcende l’acutezza della ui
              <lb/>
            ſta non facilmente taglia, & </s>
            <s xml:id="echoid-s9108" xml:space="preserve">rompe la denſità dello aere, & </s>
            <s xml:id="echoid-s9109" xml:space="preserve">però debilitata, & </s>
            <s xml:id="echoid-s9110" xml:space="preserve">conſumata per lo ſpatio dell’altezza,
              <lb/>
            riporta à noſtri ſenſi dubioſamente la grandezza delle miſure, per il che ſempre ne i membri delle Simmetrie aggin-
              <lb/>
            gner ſi deue il ſupplemento della ragione, accioche quando l’opre ſeranno in luoghi alti, ouero haueranno i membri
              <lb/>
            grandi, & </s>
            <s xml:id="echoid-s9111" xml:space="preserve">alti, tutte l’altre parti habbiano la ragione delle grandezze. </s>
            <s xml:id="echoid-s9112" xml:space="preserve">La larghezza dello Architraue dal baſſo in
              <lb/>
            quella parte, che egli ſi poſa ſopra il capitello ſerà tanto quanto la groſſezza di ſopra della colonna, che ſotto giace
              <lb/>
            al capitello, ma la parte di ſopra dello Architraue ſia quanto ſerà la groſſezza del piede della colonna, la gola detta
              <lb/>
            Cimaſa dello Architraue ſia per la ſettima parte della ſua altezza, & </s>
            <s xml:id="echoid-s9113" xml:space="preserve">tanto habbia di ſporto, l’ altra parte oltra la det
              <lb/>
            ta Cimaſa diuider ſi deue in parti dodici, & </s>
            <s xml:id="echoid-s9114" xml:space="preserve">di tre di eſſe facciaſi la prima faſcia, la ſeconda di quattro, & </s>
            <s xml:id="echoid-s9115" xml:space="preserve">la terza diſo
              <lb/>
            pra di cinque, il ſregio ſopra l’ Architraue la quarta parte meno dello Architraue. </s>
            <s xml:id="echoid-s9116" xml:space="preserve">Ma ſe hauerai à ſcolpirgli ſigurette
              <lb/>
              <note position="left" xlink:label="note-0107-07" xlink:href="note-0107-07a" xml:space="preserve">70</note>
            e ſegni, alhora farai il fregio ſia per la quarta parte piu alto dell’Architraue, accioche le ſcolture habbiano del grande.
              <lb/>
            </s>
            <s xml:id="echoid-s9117" xml:space="preserve">La gola ò Cimaſa del ſregio ſia per la ſettima della altezza di eſſo, lo ſporto quanto è la ſua groſſezza. </s>
            <s xml:id="echoid-s9118" xml:space="preserve">Sopra il
              <lb/>
            ſregio deneſi ſare il Dentello tanto alto, quanto è la ſaſcia di mezzo dello Architraue, lo ſporto quanto l’altezza,
              <lb/>
            lo ſpacio, che è tra Dentello, & </s>
            <s xml:id="echoid-s9119" xml:space="preserve">Dentello detto Metochi da Greci, in queſto modo ſi deue diuidere, che il Dentello
              <lb/>
            habbia nella ſronte mezza parte dell’ altezza ſua, il cauo della interſecatione di quella ſronte di tre, due parti
              <lb/>
            habbia della larghezza, la gola di queſto habbia la ſeſta parte dell’ altezza di quello, il gocciolatoio detto </s>
          </p>
        </div>
      </text>
    </echo>