Vitruvius, I Dieci Libri dell' Architettvra di M. Vitrvvio, 1556

Page concordance

< >
Scan Original
131 116
132 117
133 118
134 119
135 120
136 121
137 122
138 123
139 124
140 125
141 126
142 127
143 128
144 129
145 130
146 131
147 132
148 133
149 132
150 133
151 134
152 135
153 136
154 137
155 138
156 139
157 140
158 141
159 142
160 143
< >
page |< < (206) of 325 > >|
    <echo version="1.0RC">
      <text xml:lang="it" type="free">
        <div xml:id="echoid-div607" type="section" level="1" n="110">
          <p style="it">
            <s xml:id="echoid-s17784" xml:space="preserve">
              <pb o="206" file="0216" n="225" rhead="LIBRO"/>
            quanto e dal g. </s>
            <s xml:id="echoid-s17785" xml:space="preserve">all’i, & </s>
            <s xml:id="echoid-s17786" xml:space="preserve">ſia quello ſpacio b. </s>
            <s xml:id="echoid-s17787" xml:space="preserve">K. </s>
            <s xml:id="echoid-s17788" xml:space="preserve">& </s>
            <s xml:id="echoid-s17789" xml:space="preserve">dallo i. </s>
            <s xml:id="echoid-s17790" xml:space="preserve">al K. </s>
            <s xml:id="echoid-s17791" xml:space="preserve">ſi tire una linea ſin al toccamento della linea g d. </s>
            <s xml:id="echoid-s17792" xml:space="preserve">& </s>
            <s xml:id="echoid-s17793" xml:space="preserve">ſia iui ſegnato l. </s>
            <s xml:id="echoid-s17794" xml:space="preserve">& </s>
            <s xml:id="echoid-s17795" xml:space="preserve">perche
              <lb/>
            per la 33. </s>
            <s xml:id="echoid-s17796" xml:space="preserve">del primo di Euclide la linea a b, e paralella alla linea g i b, & </s>
            <s xml:id="echoid-s17797" xml:space="preserve">per lo preſuppoſto noſtro le linee g i, & </s>
            <s xml:id="echoid-s17798" xml:space="preserve">b K. </s>
            <s xml:id="echoid-s17799" xml:space="preserve">ſono eguali, ne ſegue an-
              <lb/>
            cho, che la linea b g. </s>
            <s xml:id="echoid-s17800" xml:space="preserve">ſia paralella alla linea i l. </s>
            <s xml:id="echoid-s17801" xml:space="preserve">Oltra di queſto delle linee g c, & </s>
            <s xml:id="echoid-s17802" xml:space="preserve">h e. </s>
            <s xml:id="echoid-s17803" xml:space="preserve">ſi leuino due parti eguali alla parte i l. </s>
            <s xml:id="echoid-s17804" xml:space="preserve">& </s>
            <s xml:id="echoid-s17805" xml:space="preserve">ſiano qutlle g m.
              <lb/>
            </s>
            <s xml:id="echoid-s17806" xml:space="preserve">& </s>
            <s xml:id="echoid-s17807" xml:space="preserve">h n. </s>
            <s xml:id="echoid-s17808" xml:space="preserve">& </s>
            <s xml:id="echoid-s17809" xml:space="preserve">ſiano congiunte inſieme i m. </s>
            <s xml:id="echoid-s17810" xml:space="preserve">& </s>
            <s xml:id="echoid-s17811" xml:space="preserve">m n. </s>
            <s xml:id="echoid-s17812" xml:space="preserve">per la allegata propoſitione paralelle ſeranno g l, & </s>
            <s xml:id="echoid-s17813" xml:space="preserve">m i, & </s>
            <s xml:id="echoid-s17814" xml:space="preserve">ſimilmente g h, & </s>
            <s xml:id="echoid-s17815" xml:space="preserve">m n. </s>
            <s xml:id="echoid-s17816" xml:space="preserve">Tagli an-
              <lb/>
            cho la linea m n. </s>
            <s xml:id="echoid-s17817" xml:space="preserve">la a d nel punto o, & </s>
            <s xml:id="echoid-s17818" xml:space="preserve">della linea b K. </s>
            <s xml:id="echoid-s17819" xml:space="preserve">ſia pre ſo tanto quanto è la m @. </s>
            <s xml:id="echoid-s17820" xml:space="preserve">& </s>
            <s xml:id="echoid-s17821" xml:space="preserve">ſia quella parte b p, & </s>
            <s xml:id="echoid-s17822" xml:space="preserve">dal punto o uer ſo il punto p. </s>
            <s xml:id="echoid-s17823" xml:space="preserve">
              <lb/>
            ſia tirata una linea, fin che ella tocchi la linea i m. </s>
            <s xml:id="echoid-s17824" xml:space="preserve">nel punto q. </s>
            <s xml:id="echoid-s17825" xml:space="preserve">ſe adunque la linea m ſera eguale alla o q. </s>
            <s xml:id="echoid-s17826" xml:space="preserve">egli ſtara bene. </s>
            <s xml:id="echoid-s17827" xml:space="preserve">Ma ſe la m c. </s>
            <s xml:id="echoid-s17828" xml:space="preserve">ſer a
              <lb/>
            minore ne ſegue che la b g, ſera ſtata pr eſa, maggiore di quello, che biſognaua, e pero da capo ſi deue tornare, e tanto eſperimentare, che la
              <lb/>
            parte o q, ſia eguale alla m c. </s>
            <s xml:id="echoid-s17829" xml:space="preserve">Sia adunque m c eguale alla o q. </s>
            <s xml:id="echoid-s17830" xml:space="preserve">ne ſeguir à per la allegata propoſitione 23. </s>
            <s xml:id="echoid-s17831" xml:space="preserve">del primo, & </s>
            <s xml:id="echoid-s17832" xml:space="preserve">per lo preſuppoſto
              <lb/>
            noſtro che la c o, & </s>
            <s xml:id="echoid-s17833" xml:space="preserve">la m q. </s>
            <s xml:id="echoid-s17834" xml:space="preserve">ſiano paralelle, & </s>
            <s xml:id="echoid-s17835" xml:space="preserve">ſinalmente (come detto hauemo) nella prima dimoſtratione a b. </s>
            <s xml:id="echoid-s17836" xml:space="preserve">g i. </s>
            <s xml:id="echoid-s17837" xml:space="preserve">m o d c. </s>
            <s xml:id="echoid-s17838" xml:space="preserve">ſi chiameràno le pri
              <lb/>
            me paralelle, & </s>
            <s xml:id="echoid-s17839" xml:space="preserve">a g. </s>
            <s xml:id="echoid-s17840" xml:space="preserve">m i. </s>
            <s xml:id="echoid-s17841" xml:space="preserve">c o. </s>
            <s xml:id="echoid-s17842" xml:space="preserve">le ſeconde. </s>
            <s xml:id="echoid-s17843" xml:space="preserve">Dico adunque che, g i, & </s>
            <s xml:id="echoid-s17844" xml:space="preserve">m o, ſono le due di mezzo proportionali, tra la a b, & </s>
            <s xml:id="echoid-s17845" xml:space="preserve">c d. </s>
            <s xml:id="echoid-s17846" xml:space="preserve">Fac ciaſi adun
              <lb/>
              <note position="left" xlink:label="note-0216-01" xlink:href="note-0216-01a" xml:space="preserve">10</note>
            que. </s>
            <s xml:id="echoid-s17847" xml:space="preserve">che la a d. </s>
            <s xml:id="echoid-s17848" xml:space="preserve">& </s>
            <s xml:id="echoid-s17849" xml:space="preserve">la a b. </s>
            <s xml:id="echoid-s17850" xml:space="preserve">concorrino nel puntor. </s>
            <s xml:id="echoid-s17851" xml:space="preserve">ne ſeguira quello, che ancho di ſopra detto hauemo per la ſimiglianza de i triangoli ſecondo
              <lb/>
            la preallegata propoſitione di Euclide, che nelle prime par alelle, che ſi come è proportionata la a r alla r i. </s>
            <s xml:id="echoid-s17852" xml:space="preserve">coſi ſera la b r alla r g. </s>
            <s xml:id="echoid-s17853" xml:space="preserve">& </s>
            <s xml:id="echoid-s17854" xml:space="preserve">nelle ſe-
              <lb/>
            conde paralelle quello riſpetto di comparatione che hauera la ar alla r i coſi ſara la g r. </s>
            <s xml:id="echoid-s17855" xml:space="preserve">all’a r m. </s>
            <s xml:id="echoid-s17856" xml:space="preserve">& </s>
            <s xml:id="echoid-s17857" xml:space="preserve">ſeguitando ancho ſi come nelle prune ſi
              <lb/>
            hauera la g r. </s>
            <s xml:id="echoid-s17858" xml:space="preserve">alla r m. </s>
            <s xml:id="echoid-s17859" xml:space="preserve">coſi la i r alla r o, & </s>
            <s xml:id="echoid-s17860" xml:space="preserve">nelle ſeconde ſi come ſi hauera la i r alla r o. </s>
            <s xml:id="echoid-s17861" xml:space="preserve">coſi la m r. </s>
            <s xml:id="echoid-s17862" xml:space="preserve">alla r c. </s>
            <s xml:id="echoid-s17863" xml:space="preserve">Ne ſegue adunque, che la b r.
              <lb/>
            </s>
            <s xml:id="echoid-s17864" xml:space="preserve">r g. </s>
            <s xml:id="echoid-s17865" xml:space="preserve">m r. </s>
            <s xml:id="echoid-s17866" xml:space="preserve">m c. </s>
            <s xml:id="echoid-s17867" xml:space="preserve">ſiano in continua proportione, & </s>
            <s xml:id="echoid-s17868" xml:space="preserve">ſotto la isteſſa ragione per la quarta del ſeſto ſeranno come la a b, alla g i. </s>
            <s xml:id="echoid-s17869" xml:space="preserve">la g i. </s>
            <s xml:id="echoid-s17870" xml:space="preserve">alla m o, et la
              <lb/>
            m o. </s>
            <s xml:id="echoid-s17871" xml:space="preserve">alla c d. </s>
            <s xml:id="echoid-s17872" xml:space="preserve">propoſte adunque due linee dritte a b, & </s>
            <s xml:id="echoid-s17873" xml:space="preserve">c d. </s>
            <s xml:id="echoid-s17874" xml:space="preserve">tra quelle trouato ne hauemo due continue proportionali, che ſono ſtate la g i, & </s>
            <s xml:id="echoid-s17875" xml:space="preserve">
              <lb/>
            la m o. </s>
            <s xml:id="echoid-s17876" xml:space="preserve">ilche fare uoleuamo. </s>
            <s xml:id="echoid-s17877" xml:space="preserve">Et con ſimili ragioni potremo ritrouarne quante ci ſera in piacere. </s>
            <s xml:id="echoid-s17878" xml:space="preserve">Et pero per trouarne due di mczzo pro-
              <lb/>
            portionali la b f. </s>
            <s xml:id="echoid-s17879" xml:space="preserve">ſer a un terzo della b o. </s>
            <s xml:id="echoid-s17880" xml:space="preserve">parche la b g. </s>
            <s xml:id="echoid-s17881" xml:space="preserve">è alquanto piu del terzo della b c. </s>
            <s xml:id="echoid-s17882" xml:space="preserve">& </s>
            <s xml:id="echoid-s17883" xml:space="preserve">non mai minore, ne eguale alla b f. </s>
            <s xml:id="echoid-s17884" xml:space="preserve">& </s>
            <s xml:id="echoid-s17885" xml:space="preserve">per ti ouar
              <lb/>
            ne tre di mezzo proportionali la b f. </s>
            <s xml:id="echoid-s17886" xml:space="preserve">ſera un quarto della b c. </s>
            <s xml:id="echoid-s17887" xml:space="preserve">et la b g. </s>
            <s xml:id="echoid-s17888" xml:space="preserve">alquãto maggiore della b f. </s>
            <s xml:id="echoid-s17889" xml:space="preserve">& </s>
            <s xml:id="echoid-s17890" xml:space="preserve">per trouarne quattro la b f. </s>
            <s xml:id="echoid-s17891" xml:space="preserve">ſera un qu n
              <lb/>
            to della b c. </s>
            <s xml:id="echoid-s17892" xml:space="preserve">& </s>
            <s xml:id="echoid-s17893" xml:space="preserve">la b g. </s>
            <s xml:id="echoid-s17894" xml:space="preserve">ſera alquanto maggiore della b f. </s>
            <s xml:id="echoid-s17895" xml:space="preserve">cioe un qumio di eſſa b c. </s>
            <s xml:id="echoid-s17896" xml:space="preserve">& </s>
            <s xml:id="echoid-s17897" xml:space="preserve">coſi ſempre la b c. </s>
            <s xml:id="echoid-s17898" xml:space="preserve">ſera partita in una parte di piu di quel,
              <lb/>
              <note position="left" xlink:label="note-0216-02" xlink:href="note-0216-02a" xml:space="preserve">20</note>
            che ſono le linee mezzane proportionali, che trouar uorremo, & </s>
            <s xml:id="echoid-s17899" xml:space="preserve">ſempre lab f. </s>
            <s xml:id="echoid-s17900" xml:space="preserve">ſer a una di quelle parti, & </s>
            <s xml:id="echoid-s17901" xml:space="preserve">la b g. </s>
            <s xml:id="echoid-s17902" xml:space="preserve">alquanto magg ore ſi pren
              <lb/>
            dera che la b f. </s>
            <s xml:id="echoid-s17903" xml:space="preserve">et però la parte b f. </s>
            <s xml:id="echoid-s17904" xml:space="preserve">ſi piglia, che tante ſiate à punto ſia della b c. </s>
            <s xml:id="echoid-s17905" xml:space="preserve">accioche la grandezza della b f. </s>
            <s xml:id="echoid-s17906" xml:space="preserve">ſi poſſa coniettur are piu preſto.</s>
            <s xml:id="echoid-s17907" xml:space="preserve"/>
          </p>
          <figure number="112">
            <variables xml:id="echoid-variables42" xml:space="preserve">a b n e k p b l i q o d f g w c r</variables>
          </figure>
          <p style="it">
            <s xml:id="echoid-s17908" xml:space="preserve">Quanto appartiene ad Archita dico la inuentione eſſer difficile, & </s>
            <s xml:id="echoid-s17909" xml:space="preserve">la dimoſtra
              <lb/>
            tione molto ſottile in modo, che à porla in opera, non ſi troua instrumen-
              <lb/>
            to alcuno ſatto ſecondo quella dimostratione. </s>
            <s xml:id="echoid-s17910" xml:space="preserve">Noi con quella facilità, che
              <lb/>
            ſi può dimoſtreremo tal coſa, i ſond onenti dellaquale ſono diſperſi in molte
              <lb/>
            propoſitioni di Euclide, lequali é neceſſario hauerle per certe perche trop
              <lb/>
            po ſarebbe il ſcioglier ogni anello de ſi gran catena. </s>
            <s xml:id="echoid-s17911" xml:space="preserve">Date ci ſian due linee
              <lb/>
            a d. </s>
            <s xml:id="echoid-s17912" xml:space="preserve">maggiore, l’altra ſia c. </s>
            <s xml:id="echoid-s17913" xml:space="preserve">Tra queste biſogna trouarne due di mezzo
              <lb/>
              <note position="left" xlink:label="note-0216-03" xlink:href="note-0216-03a" xml:space="preserve">30</note>
            proportionali. </s>
            <s xml:id="echoid-s17914" xml:space="preserve">Prendiamo adunque la maggiore a d. </s>
            <s xml:id="echoid-s17915" xml:space="preserve">d’intorno laquale ſi
              <lb/>
            faccia un circolo di modo, che la ne diuenti il diametro di eſſa, & </s>
            <s xml:id="echoid-s17916" xml:space="preserve">ſia il det-
              <lb/>
            to circolo a b d f. </s>
            <s xml:id="echoid-s17917" xml:space="preserve">nel qual circolo per la prima delterzo di Euclide ſi fara
              <lb/>
            una linea eguale alla linea c. </s>
            <s xml:id="echoid-s17918" xml:space="preserve">& </s>
            <s xml:id="echoid-s17919" xml:space="preserve">ſi quella a b. </s>
            <s xml:id="echoid-s17920" xml:space="preserve">laquale tanto ſi stenda oltra il
              <lb/>
            circolo, che tocchi il punto p. </s>
            <s xml:id="echoid-s17921" xml:space="preserve">ilquale ſia lo eſtremo d’una linea, & </s>
            <s xml:id="echoid-s17922" xml:space="preserve">tocchi
              <lb/>
            il circolo nel punto d. </s>
            <s xml:id="echoid-s17923" xml:space="preserve">& </s>
            <s xml:id="echoid-s17924" xml:space="preserve">ſcende fin al punto o, & </s>
            <s xml:id="echoid-s17925" xml:space="preserve">ſia tutta p d o, & </s>
            <s xml:id="echoid-s17926" xml:space="preserve">à que
              <lb/>
            sta ne ſia tratta una egualmente diſtante, che tagli la linea a d. </s>
            <s xml:id="echoid-s17927" xml:space="preserve">nel punto e. </s>
            <s xml:id="echoid-s17928" xml:space="preserve">intendiſi poi una metà di colonna ritonda, che ſemicilindro ſi chia-
              <lb/>
            ma, dritto ſopra il ſemicircolo a b d. </s>
            <s xml:id="echoid-s17929" xml:space="preserve">& </s>
            <s xml:id="echoid-s17930" xml:space="preserve">oltra di queſto imaguiamoci nel taglio equidistante, che paralellogrammo è, detto del ſemcilindro ſo-
              <lb/>
            pra a d. </s>
            <s xml:id="echoid-s17931" xml:space="preserve">diſſegnato un ſemicircolo ilquale è come un par alellogrammo del ſemicilindro ad anguli giuſti nel piano del circolo A
              <unsure/>
            b d f. </s>
            <s xml:id="echoid-s17932" xml:space="preserve">Queſto ſe
              <lb/>
            micircolo girato dal punto d nel punto b, stando fermo il punto a, che è termine del Diametro a d. </s>
            <s xml:id="echoid-s17933" xml:space="preserve">nel ſuo girare tagliera quella ſoperficie co-
              <lb/>
              <note position="left" xlink:label="note-0216-04" xlink:href="note-0216-04a" xml:space="preserve">40</note>
            lonnare, ò cilindrica, & </s>
            <s xml:id="echoid-s17934" xml:space="preserve">deſcriuera in eſſa una certa linea, dapoi ſe ſtando ſerma la a d. </s>
            <s xml:id="echoid-s17935" xml:space="preserve">il triangolo a p d gir ando ſi fara un mouimento contra
              <lb/>
            rio al ſemicircolo ſenza dubbio eg’i deſcriuera una ſoperficie conica della linea dritta a p. </s>
            <s xml:id="echoid-s17936" xml:space="preserve">laquale nel girarſi ſi congiugne in qualche punto di
              <lb/>
            quella linea, che poco auanti ſu deſcritta mediante il mouimento del ſemicircolo nella ſoperficie del cilindro. </s>
            <s xml:id="echoid-s17937" xml:space="preserve">Similmente ancho il b. </s>
            <s xml:id="echoid-s17938" xml:space="preserve">circonſcri-
              <lb/>
            uera un ſemicircolo nella ſoperficie del cono. </s>
            <s xml:id="echoid-s17939" xml:space="preserve">Et finalmenie il ſemicircolo a d e. </s>
            <s xml:id="echoid-s17940" xml:space="preserve">habbia il ſuo ſito dapoi che ſera moſſo la doue le linee caden-
              <lb/>
            do concorrono, & </s>
            <s xml:id="echoid-s17941" xml:space="preserve">il triangolo che al contrario ſi moua, habbia queſto ſito d l a. </s>
            <s xml:id="echoid-s17942" xml:space="preserve">& </s>
            <s xml:id="echoid-s17943" xml:space="preserve">il punto doue concadono ſia K. </s>
            <s xml:id="echoid-s17944" xml:space="preserve">ſia ancho per b. </s>
            <s xml:id="echoid-s17945" xml:space="preserve">deſcritto
              <lb/>
            un ſemicircolo b m f. </s>
            <s xml:id="echoid-s17946" xml:space="preserve">& </s>
            <s xml:id="echoid-s17947" xml:space="preserve">la doue ſi taglia col circolo b d f a. </s>
            <s xml:id="echoid-s17948" xml:space="preserve">ſia b f. </s>
            <s xml:id="echoid-s17949" xml:space="preserve">indi da punto K. </s>
            <s xml:id="echoid-s17950" xml:space="preserve">à quel piano, che è del ſemicircolo b d a. </s>
            <s xml:id="echoid-s17951" xml:space="preserve">cada una perpen-
              <lb/>
            dicolare, certo è che cadera nella cir conferenza del circolo, perche nel piano dello iſteßo circolo fu drizzato il cilindro. </s>
            <s xml:id="echoid-s17952" xml:space="preserve">Cada adnnque,
              <lb/>
            & </s>
            <s xml:id="echoid-s17953" xml:space="preserve">ſia K i & </s>
            <s xml:id="echoid-s17954" xml:space="preserve">quella linea, che uiene dallo i. </s>
            <s xml:id="echoid-s17955" xml:space="preserve">nello a congiunta ſia con b f. </s>
            <s xml:id="echoid-s17956" xml:space="preserve">nel punto h. </s>
            <s xml:id="echoid-s17957" xml:space="preserve">Ma perche luno, & </s>
            <s xml:id="echoid-s17958" xml:space="preserve">l’altro ſimicircolo cioe il d a, & </s>
            <s xml:id="echoid-s17959" xml:space="preserve">il
              <lb/>
            b m f. </s>
            <s xml:id="echoid-s17960" xml:space="preserve">è drizzato ſopra il ſottopoſto piano del circolo a b d f. </s>
            <s xml:id="echoid-s17961" xml:space="preserve">& </s>
            <s xml:id="echoid-s17962" xml:space="preserve">pero il lor taglio commune m h. </s>
            <s xml:id="echoid-s17963" xml:space="preserve">sta con anguli giuſti ſopra il piano del circo
              <lb/>
            lo a b d f. </s>
            <s xml:id="echoid-s17964" xml:space="preserve">perilche ancho ſopra eſſa b f. </s>
            <s xml:id="echoid-s17965" xml:space="preserve">è drizzata la m h. </s>
            <s xml:id="echoid-s17966" xml:space="preserve">A dunque cio che è contenuto ſotto la b h f. </s>
            <s xml:id="echoid-s17967" xml:space="preserve">& </s>
            <s xml:id="echoid-s17968" xml:space="preserve">lo h f. </s>
            <s xml:id="echoid-s17969" xml:space="preserve">& </s>
            <s xml:id="echoid-s17970" xml:space="preserve">ſotto lo h a, & </s>
            <s xml:id="echoid-s17971" xml:space="preserve">lo h i ſi tro-
              <lb/>
              <note position="left" xlink:label="note-0216-05" xlink:href="note-0216-05a" xml:space="preserve">50</note>
            ua eguale à quello che è ſotto la h m. </s>
            <s xml:id="echoid-s17972" xml:space="preserve">Adunque lo angulo a m i, è giuſto, per la conuerſione del corolario della ottaua del ſesto. </s>
            <s xml:id="echoid-s17973" xml:space="preserve">& </s>
            <s xml:id="echoid-s17974" xml:space="preserve">il triangolo
              <lb/>
            a m i, ſi troua ſimile all’uno, & </s>
            <s xml:id="echoid-s17975" xml:space="preserve">all’altro de i due trianguli m a h. </s>
            <s xml:id="echoid-s17976" xml:space="preserve">& </s>
            <s xml:id="echoid-s17977" xml:space="preserve">a K d. </s>
            <s xml:id="echoid-s17978" xml:space="preserve">& </s>
            <s xml:id="echoid-s17979" xml:space="preserve">perche lo angulo d K a. </s>
            <s xml:id="echoid-s17980" xml:space="preserve">è giusto per la trenteſima del trenteſimo.
              <lb/>
            </s>
            <s xml:id="echoid-s17981" xml:space="preserve">
              <figure xlink:label="fig-0216-02" xlink:href="fig-0216-02a" number="113">
                <variables xml:id="echoid-variables43" xml:space="preserve">c p l k b m i o b a e d f o</variables>
              </figure>
            A dunque per la uinteſimanona del primo d K m, ſono egualmente distanti, impe-
              <lb/>
            roche per le coſe dimoſtrate h i m h. </s>
            <s xml:id="echoid-s17982" xml:space="preserve">ſono perpendicolari al piano del circolo a b d
              <lb/>
            f. </s>
            <s xml:id="echoid-s17983" xml:space="preserve">A dunque egli è proportionale, che come ſi ha d a. </s>
            <s xml:id="echoid-s17984" xml:space="preserve">ad a K coſi ſi habbia K a. </s>
            <s xml:id="echoid-s17985" xml:space="preserve">ad a i.
              <lb/>
            </s>
            <s xml:id="echoid-s17986" xml:space="preserve">& </s>
            <s xml:id="echoid-s17987" xml:space="preserve">i a ad a m. </s>
            <s xml:id="echoid-s17988" xml:space="preserve">percioche i triangoli d a K. </s>
            <s xml:id="echoid-s17989" xml:space="preserve">K a i. </s>
            <s xml:id="echoid-s17990" xml:space="preserve">i m a. </s>
            <s xml:id="echoid-s17991" xml:space="preserve">ſono ſimili per la quarta del
              <lb/>
            ſeſto, & </s>
            <s xml:id="echoid-s17992" xml:space="preserve">coſi ſeguita che quattro dritte linee d a. </s>
            <s xml:id="echoid-s17993" xml:space="preserve">a K. </s>
            <s xml:id="echoid-s17994" xml:space="preserve">a i. </s>
            <s xml:id="echoid-s17995" xml:space="preserve">a m ſiano continue propor
              <lb/>
            tionali, ma la a m. </s>
            <s xml:id="echoid-s17996" xml:space="preserve">ſi troua eguale alla c, & </s>
            <s xml:id="echoid-s17997" xml:space="preserve">per la commune ſententia, quelle coſe
              <lb/>
            che ſono eguale ad una, ſono tra ſe eguali, perche la a m ſi troua eguale alla a b. </s>
            <s xml:id="echoid-s17998" xml:space="preserve">
              <lb/>
            A dunque proposte due linee ad. </s>
            <s xml:id="echoid-s17999" xml:space="preserve">c. </s>
            <s xml:id="echoid-s18000" xml:space="preserve">ne hauemo trouate due di mezzo proportiona-
              <lb/>
              <note position="left" xlink:label="note-0216-06" xlink:href="note-0216-06a" xml:space="preserve">60</note>
            li, che ſono a K. </s>
            <s xml:id="echoid-s18001" xml:space="preserve">a i. </s>
            <s xml:id="echoid-s18002" xml:space="preserve">come doueuamo fare. </s>
            <s xml:id="echoid-s18003" xml:space="preserve">Platone ſimilmente ne fece, & </s>
            <s xml:id="echoid-s18004" xml:space="preserve">la dimo
              <lb/>
            ſtratione, & </s>
            <s xml:id="echoid-s18005" xml:space="preserve">lo inſlrumento, come qui ſotto poneremo. </s>
            <s xml:id="echoid-s18006" xml:space="preserve">Lega le due dritte linee,
              <lb/>
            tra lequali uuoi trouarne due proportionali, legale dico in un angulo dritto nel purt
              <lb/>
            to b. </s>
            <s xml:id="echoid-s18007" xml:space="preserve">& </s>
            <s xml:id="echoid-s18008" xml:space="preserve">ſia la maggiore b g. </s>
            <s xml:id="echoid-s18009" xml:space="preserve">& </s>
            <s xml:id="echoid-s18010" xml:space="preserve">la minore e b. </s>
            <s xml:id="echoid-s18011" xml:space="preserve">allonga poi l’una, & </s>
            <s xml:id="echoid-s18012" xml:space="preserve">l’altra fuori del
              <lb/>
            l’angulo b. </s>
            <s xml:id="echoid-s18013" xml:space="preserve">la maggiore uerſo il d. </s>
            <s xml:id="echoid-s18014" xml:space="preserve">& </s>
            <s xml:id="echoid-s18015" xml:space="preserve">la minore uerſo il c, & </s>
            <s xml:id="echoid-s18016" xml:space="preserve">fa due anguli dritti
              <lb/>
            trouando il punto c, & </s>
            <s xml:id="echoid-s18017" xml:space="preserve">il punto d. </s>
            <s xml:id="echoid-s18018" xml:space="preserve">nelle loro linee conueniente, & </s>
            <s xml:id="echoid-s18019" xml:space="preserve">ſia l’uno angulo
              <lb/>
            g c d. </s>
            <s xml:id="echoid-s18020" xml:space="preserve">& </s>
            <s xml:id="echoid-s18021" xml:space="preserve">l’altro c d e. </s>
            <s xml:id="echoid-s18022" xml:space="preserve">ſi dico, che tra le due linee dritte e b. </s>
            <s xml:id="echoid-s18023" xml:space="preserve">& </s>
            <s xml:id="echoid-s18024" xml:space="preserve">b g. </s>
            <s xml:id="echoid-s18025" xml:space="preserve">proportionato ha
              <lb/>
            uerai due altre linee, che ſono b d. </s>
            <s xml:id="echoid-s18026" xml:space="preserve">& </s>
            <s xml:id="echoid-s18027" xml:space="preserve">b c. </s>
            <s xml:id="echoid-s18028" xml:space="preserve">perche preſuppoſto hauemo lo angulo e d
              <lb/>
            c.</s>
            <s xml:id="echoid-s18029" xml:space="preserve">eſſer dritto, & </s>
            <s xml:id="echoid-s18030" xml:space="preserve">la e d. </s>
            <s xml:id="echoid-s18031" xml:space="preserve">eſſer par alella alla c g. </s>
            <s xml:id="echoid-s18032" xml:space="preserve">pero ne ſegue per la 29 del primo,
              <lb/>
            che lo angulo g c d. </s>
            <s xml:id="echoid-s18033" xml:space="preserve">ſia giuſto, & </s>
            <s xml:id="echoid-s18034" xml:space="preserve">eguale allo angulo c d e. </s>
            <s xml:id="echoid-s18035" xml:space="preserve">ilquale ſimilmente eſſer
              <lb/>
              <note position="left" xlink:label="note-0216-07" xlink:href="note-0216-07a" xml:space="preserve">70</note>
            giuſto preſupponemo, ma la d b per lo nostro componimento cade porpendicolare
              <lb/>
            ſopra la g b d. </s>
            <s xml:id="echoid-s18036" xml:space="preserve">adunqae per lo corolario della ottaua del ſesto la b d. </s>
            <s xml:id="echoid-s18037" xml:space="preserve">è quella linea
              <lb/>
            proportionata, che cade tra la e b, & </s>
            <s xml:id="echoid-s18038" xml:space="preserve">la b c. </s>
            <s xml:id="echoid-s18039" xml:space="preserve">& </s>
            <s xml:id="echoid-s18040" xml:space="preserve">ſunilmente la linea b c, è la mezza
              <lb/>
            na proportionale tra la b d. </s>
            <s xml:id="echoid-s18041" xml:space="preserve">& </s>
            <s xml:id="echoid-s18042" xml:space="preserve">la b g. </s>
            <s xml:id="echoid-s18043" xml:space="preserve">poſta adunque la ragione, & </s>
            <s xml:id="echoid-s18044" xml:space="preserve">la proportione
              <lb/>
            commune della linea b d alla linea b c. </s>
            <s xml:id="echoid-s18045" xml:space="preserve">ne ſeguita che la e b h iuera quello r ſpet o di
              <lb/>
            comparatione alla linea b d. </s>
            <s xml:id="echoid-s18046" xml:space="preserve">che hauer a la c b. </s>
            <s xml:id="echoid-s18047" xml:space="preserve">alla linea b c. </s>
            <s xml:id="echoid-s18048" xml:space="preserve">percioche l’una, et </s>
          </p>
        </div>
      </text>
    </echo>