Vitruvius, I Dieci Libri dell' Architettvra di M. Vitrvvio, 1556

Page concordance

< >
Scan Original
141 126
142 127
143 128
144 129
145 130
146 131
147 132
148 133
149 132
150 133
151 134
152 135
153 136
154 137
155 138
156 139
157 140
158 141
159 142
160 143
161 144
162 145
163 130
164 147
165 148
166 149
167 150
168 151
169 152
170 153
< >
page |< < (207) of 325 > >|
    <echo version="1.0RC">
      <text xml:lang="it" type="free">
        <div xml:id="echoid-div607" type="section" level="1" n="110">
          <p style="it">
            <s xml:id="echoid-s18048" xml:space="preserve">
              <pb o="207" file="0217" n="226" rhead="NONO."/>
            ragione, come é ſtato manifeſto e come la b d alla b c. </s>
            <s xml:id="echoid-s18049" xml:space="preserve">per la undeci-
              <lb/>
              <figure xlink:label="fig-0217-01" xlink:href="fig-0217-01a" number="114">
                <variables xml:id="echoid-variables44" xml:space="preserve">d c b e g l n o k m</variables>
              </figure>
            ma del quinto. </s>
            <s xml:id="echoid-s18050" xml:space="preserve">A dunque tra le due dritte propoſte, che erano e b, & </s>
            <s xml:id="echoid-s18051" xml:space="preserve">
              <lb/>
            b g. </s>
            <s xml:id="echoid-s18052" xml:space="preserve">trouate ne hauemo due ſotto la iſteſſa ragione cõtinuamẽte pro-
              <lb/>
            portionali, che ſono b d, et b c. </s>
            <s xml:id="echoid-s18053" xml:space="preserve">Et questa è la ragione di Platone. </s>
            <s xml:id="echoid-s18054" xml:space="preserve">Lo
              <lb/>
            inſtrumẽto ueramẽte é ſacile, imperoche egli ſi fa d’una ſquadra & </s>
            <s xml:id="echoid-s18055" xml:space="preserve">
              <lb/>
            d’una rega in que ſto modo. </s>
            <s xml:id="echoid-s18056" xml:space="preserve">Sia una ſquadra K m l, et in un braccio di
              <lb/>
            eſſa accõmodata ſia una rega, che ſia n o. </s>
            <s xml:id="echoid-s18057" xml:space="preserve">et che faccia con detto brac
              <lb/>
            cio gli anguli giuſti, e mouer ſi poſſa hora uer ſo il punto m. </s>
            <s xml:id="echoid-s18058" xml:space="preserve">hora uer
              <lb/>
            ſo il punto l. </s>
            <s xml:id="echoid-s18059" xml:space="preserve">fatto queſto è uolendo trouare due linee tra mezzo in
              <lb/>
            continua proportione à due propoſte, farai che le due date, ſiano per
              <lb/>
              <note position="left" xlink:label="note-0217-01" xlink:href="note-0217-01a" xml:space="preserve">10</note>
            eſſempio la e b, & </s>
            <s xml:id="echoid-s18060" xml:space="preserve">la b g. </s>
            <s xml:id="echoid-s18061" xml:space="preserve">(come di ſopra hauemo detto) congiunte
              <lb/>
            nel punto b. </s>
            <s xml:id="echoid-s18062" xml:space="preserve">in un’angulo giuſto, & </s>
            <s xml:id="echoid-s18063" xml:space="preserve">ſiano prolongate come di ſopra.
              <lb/>
            </s>
            <s xml:id="echoid-s18064" xml:space="preserve">Allhora ſi piglia lo inſtrumento, & </s>
            <s xml:id="echoid-s18065" xml:space="preserve">coſi egli s’ accommoda alle linee
              <lb/>
            dritte c b, & </s>
            <s xml:id="echoid-s18066" xml:space="preserve">b g. </s>
            <s xml:id="echoid-s18067" xml:space="preserve">che il lato K m. </s>
            <s xml:id="echoid-s18068" xml:space="preserve">della ſquadra cada ſopra il g. </s>
            <s xml:id="echoid-s18069" xml:space="preserve">& </s>
            <s xml:id="echoid-s18070" xml:space="preserve">
              <lb/>
            lo angulo m. </s>
            <s xml:id="echoid-s18071" xml:space="preserve">ſi uniſca alla linea b c. </s>
            <s xml:id="echoid-s18072" xml:space="preserve">lo angulo o ſia ſopra la linea b d. </s>
            <s xml:id="echoid-s18073" xml:space="preserve">
              <lb/>
            & </s>
            <s xml:id="echoid-s18074" xml:space="preserve">la regola mobile uegna per lo punto, e, di modo che il punto m ſia
              <lb/>
            ſoprapoſto al punto c. </s>
            <s xml:id="echoid-s18075" xml:space="preserve">& </s>
            <s xml:id="echoid-s18076" xml:space="preserve">il ſegno e. </s>
            <s xml:id="echoid-s18077" xml:space="preserve">cada ſopra d. </s>
            <s xml:id="echoid-s18078" xml:space="preserve">& </s>
            <s xml:id="echoid-s18079" xml:space="preserve">coſi ordinato, che hauerai, & </s>
            <s xml:id="echoid-s18080" xml:space="preserve">acconcio lo ſtrumento trouato hauerai tra le linee e b, & </s>
            <s xml:id="echoid-s18081" xml:space="preserve">
              <lb/>
            b g. </s>
            <s xml:id="echoid-s18082" xml:space="preserve">due proportionate linee di mezzo cioe la b d. </s>
            <s xml:id="echoid-s18083" xml:space="preserve">& </s>
            <s xml:id="echoid-s18084" xml:space="preserve">la b c. </s>
            <s xml:id="echoid-s18085" xml:space="preserve">del che la dimostratione è la iſteſſa con quella di ſopra.</s>
            <s xml:id="echoid-s18086" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s18087" xml:space="preserve">Nicomede uſaua un’altra dimoſtratione, & </s>
            <s xml:id="echoid-s18088" xml:space="preserve">ſormaua un’ altro ſtrumento ſecondo quella dimoſtratione, molto artiſicio ſamente, & </s>
            <s xml:id="echoid-s18089" xml:space="preserve">con gran ſottili
              <lb/>
              <note position="left" xlink:label="note-0217-02" xlink:href="note-0217-02a" xml:space="preserve">20</note>
            tà de inuentione ſuperando Eratosthene é ſtato di gran giouamento à gli ſtudioſi della Geometria. </s>
            <s xml:id="echoid-s18090" xml:space="preserve">Per ſare lo strumento è neceſſario pianar
              <lb/>
            due righe, & </s>
            <s xml:id="echoid-s18091" xml:space="preserve">porle una ſopr a l’altra con anguli giuſti di modo, che d’amendue ſia uno isteſſo piano, ne una ſia piu alta dell’altra, ſia una d’eſſe
              <lb/>
            a b. </s>
            <s xml:id="echoid-s18092" xml:space="preserve">l’altra c d. </s>
            <s xml:id="echoid-s18093" xml:space="preserve">facciaſi nell’a b. </s>
            <s xml:id="echoid-s18094" xml:space="preserve">un canale, che u’entri à coda di Rondine, è ſotto ſquadra un legno, che andar poſſa in ſu, & </s>
            <s xml:id="echoid-s18095" xml:space="preserve">in giu per quel ca-
              <lb/>
            nale ſenza uſcir fuori: </s>
            <s xml:id="echoid-s18096" xml:space="preserve">ſia nel mezzo della riga c d. </s>
            <s xml:id="echoid-s18097" xml:space="preserve">per longo di eſſa una linea, & </s>
            <s xml:id="echoid-s18098" xml:space="preserve">nella testa di eſſa, doue è la d ſia posto un pirone, & </s>
            <s xml:id="echoid-s18099" xml:space="preserve">ſia quello
              <lb/>
            g h, ilquale eſca alquanto fuori del piano della riga c d. </s>
            <s xml:id="echoid-s18100" xml:space="preserve">& </s>
            <s xml:id="echoid-s18101" xml:space="preserve">in quella uolger ſi poſſa, & </s>
            <s xml:id="echoid-s18102" xml:space="preserve">ſia pertuggiata, & </s>
            <s xml:id="echoid-s18103" xml:space="preserve">u’entri un pironcino, che la formi ſo-
              <lb/>
            pra la coda di Rondine, che dicemo andar in ſu, & </s>
            <s xml:id="echoid-s18104" xml:space="preserve">in giu per lo canale della riga a b. </s>
            <s xml:id="echoid-s18105" xml:space="preserve">& </s>
            <s xml:id="echoid-s18106" xml:space="preserve">nel pirone g h. </s>
            <s xml:id="echoid-s18107" xml:space="preserve">ſia un foro, nelqual entri la regoletta,
              <lb/>
            e f. </s>
            <s xml:id="echoid-s18108" xml:space="preserve">Se adũque piglier ai l’eſtremo capo K della regoletta e f. </s>
            <s xml:id="echoid-s18109" xml:space="preserve">& </s>
            <s xml:id="echoid-s18110" xml:space="preserve">mouer ai quella o uerſo le parti dello a. </s>
            <s xml:id="echoid-s18111" xml:space="preserve">ò uero uerſo le parti del b. </s>
            <s xml:id="echoid-s18112" xml:space="preserve">ſempre il pun
              <lb/>
            to e ſi mouera per la dritta linea a b. </s>
            <s xml:id="echoid-s18113" xml:space="preserve">& </s>
            <s xml:id="echoid-s18114" xml:space="preserve">la regoletta e ſ penetrando per lo foro del pirone g h. </s>
            <s xml:id="echoid-s18115" xml:space="preserve">entrera, & </s>
            <s xml:id="echoid-s18116" xml:space="preserve">uſcira, & </s>
            <s xml:id="echoid-s18117" xml:space="preserve">la dritta linea di mezzo
              <lb/>
            della regoletta e f ſi mouera col ſuo predetto mouimcto per lo perno del ſuo pirone, oſſeruaſi ſinalmẽte, che lo ecceſſo e K della regoletta ſia e f.
              <lb/>
            </s>
            <s xml:id="echoid-s18118" xml:space="preserve">ſempre lo iſteſſo, et della iſteſſa lun
              <lb/>
              <note position="left" xlink:label="note-0217-03" xlink:href="note-0217-03a" xml:space="preserve">30</note>
            ghezza. </s>
            <s xml:id="echoid-s18119" xml:space="preserve">per ilche ſe noi ponere-
              <lb/>
            mo nel punto K una punta di for-
              <lb/>
            ro, che tocchi un piano egli ſi for
              <lb/>
              <figure xlink:label="fig-0217-02" xlink:href="fig-0217-02a" number="115">
                <variables xml:id="echoid-variables45" xml:space="preserve">c b g b d n m l k e a</variables>
              </figure>
            mera una linea piegata come la l
              <lb/>
            m n. </s>
            <s xml:id="echoid-s18120" xml:space="preserve">laquale Nicome de chiama pri
              <lb/>
            ma Concoide, & </s>
            <s xml:id="echoid-s18121" xml:space="preserve">lo ſpacio, che è
              <lb/>
            tra e, & </s>
            <s xml:id="echoid-s18122" xml:space="preserve">K. </s>
            <s xml:id="echoid-s18123" xml:space="preserve">egli chiama la grãdez
              <lb/>
            za della regoletta, & </s>
            <s xml:id="echoid-s18124" xml:space="preserve">il punto d il
              <lb/>
            Polo. </s>
            <s xml:id="echoid-s18125" xml:space="preserve">In queſta linea piegata Ni-
              <lb/>
            comede ne troua tre principali
              <lb/>
              <note position="left" xlink:label="note-0217-04" xlink:href="note-0217-04a" xml:space="preserve">40</note>
            propietà; </s>
            <s xml:id="echoid-s18126" xml:space="preserve">L’una è che quanto piu
              <lb/>
            s’allarga la linea torta l m n. </s>
            <s xml:id="echoid-s18127" xml:space="preserve">tanto
              <lb/>
            meno è lontana dalla dritta a b. </s>
            <s xml:id="echoid-s18128" xml:space="preserve">co
              <lb/>
            me ſi uede, che il punto c, è piu
              <lb/>
            lontano dalla linea a b. </s>
            <s xml:id="echoid-s18129" xml:space="preserve">che il pun-
              <lb/>
            to. </s>
            <s xml:id="echoid-s18130" xml:space="preserve">n. </s>
            <s xml:id="echoid-s18131" xml:space="preserve">& </s>
            <s xml:id="echoid-s18132" xml:space="preserve">il punto n, piu lontano
              <lb/>
            che il punto m. </s>
            <s xml:id="echoid-s18133" xml:space="preserve">& </s>
            <s xml:id="echoid-s18134" xml:space="preserve">il punto m. </s>
            <s xml:id="echoid-s18135" xml:space="preserve">piu
              <lb/>
            lontano che il punto l. </s>
            <s xml:id="echoid-s18136" xml:space="preserve">ilche ſi ue-
              <lb/>
            de chiaramente facendo da i detti
              <lb/>
            punti c n m l cadere le perpendico
              <lb/>
              <note position="left" xlink:label="note-0217-05" xlink:href="note-0217-05a" xml:space="preserve">50</note>
            lari ſopra la linea a b. </s>
            <s xml:id="echoid-s18137" xml:space="preserve">La ſeconda
              <lb/>
            propietà è questa, che ſe tra la re
              <lb/>
            gola a b. </s>
            <s xml:id="echoid-s18138" xml:space="preserve">& </s>
            <s xml:id="echoid-s18139" xml:space="preserve">la linea piegata ſi ti-
              <lb/>
            rera una linea quella ſinalmente
              <lb/>
            taglier à la piegata, come ſi uede
              <lb/>
            tirando la linea p. </s>
            <s xml:id="echoid-s18140" xml:space="preserve">q. </s>
            <s xml:id="echoid-s18141" xml:space="preserve">la terza pro-
              <lb/>
            pietà, é che la dritta a b. </s>
            <s xml:id="echoid-s18142" xml:space="preserve">& </s>
            <s xml:id="echoid-s18143" xml:space="preserve">la pie-
              <lb/>
            gata primamente deſcritta mai nõ
              <lb/>
            concorreranno in uno, ſe ben fuſſe
              <lb/>
              <note position="left" xlink:label="note-0217-06" xlink:href="note-0217-06a" xml:space="preserve">60</note>
            ro tirate in infinito. </s>
            <s xml:id="echoid-s18144" xml:space="preserve">Et queſto ſi
              <lb/>
            uede euidentemente ſe alcuno con-
              <lb/>
            ſidera bene guardando la forma
              <lb/>
            dello ſtrumento predetto, perche
              <lb/>
              <figure xlink:label="fig-0217-03" xlink:href="fig-0217-03a" number="116">
                <variables xml:id="echoid-variables46" xml:space="preserve">d f g a e b l c</variables>
              </figure>
              <note position="left" xlink:label="note-0217-07" xlink:href="note-0217-07a" xml:space="preserve">70</note>
            </s>
          </p>
        </div>
      </text>
    </echo>