Vitruvius, I Dieci Libri dell' Architettvra di M. Vitrvvio, 1556

Page concordance

< >
Scan Original
141 126
142 127
143 128
144 129
145 130
146 131
147 132
148 133
149 132
150 133
151 134
152 135
153 136
154 137
155 138
156 139
157 140
158 141
159 142
160 143
161 144
162 145
163 130
164 147
165 148
166 149
167 150
168 151
169 152
170 153
< >
page |< < (215) of 325 > >|
    <echo version="1.0RC">
      <text xml:lang="it" type="free">
        <div xml:id="echoid-div634" type="section" level="1" n="112">
          <p style="it">
            <s xml:id="echoid-s18813" xml:space="preserve">
              <pb o="215" file="0225" n="234" rhead="NONO."/>
            sto del Sole. </s>
            <s xml:id="echoid-s18814" xml:space="preserve">Allhora adunque haueremo conoſciuto il numero delle riuolutioni dello Epiciclo, quando cí ſara maniſeſto lo ſpacio d’una rìuolutio
              <lb/>
            ne, auuegna che non coſi ſottilmente, ne per queſto ancho ci puo ſtar aſcoſo il numero de i meſi Lunari, ogni fiata, che hauer potremo il numero
              <lb/>
            della uolta, & </s>
            <s xml:id="echoid-s18815" xml:space="preserve">della piena della Luna, & </s>
            <s xml:id="echoid-s18816" xml:space="preserve">per lo ſpacio del tempo tra una Eclipſe & </s>
            <s xml:id="echoid-s18817" xml:space="preserve">l’altra partito nel numero de i meſi Lunari, ci dar à la quă
              <lb/>
            tità di eſſo meſe Lunare. </s>
            <s xml:id="echoid-s18818" xml:space="preserve">& </s>
            <s xml:id="echoid-s18819" xml:space="preserve">perche nel detto meſe la Luna compie una riuolutione della longhezza, et ui aggiugne tanto di ſpacio quan-
              <lb/>
            to in quello ſteſſo meſe il Sole ſi moue, però tutto quel circolo intiero con il detto mouimento del Sole partito nel numero de i giorni del meſe
              <lb/>
            Lunare con i ſuoirotti ci darà ad intendere, quanto ſia il mouimento diurno della Luna. </s>
            <s xml:id="echoid-s18820" xml:space="preserve">Oueramente per ſaper lo isteſſo mouimento diurno
              <lb/>
            della Luna ſi puo al numero delle riuolutioni fatte dalla Luna nel detto ſpatio di due Eclipſi aggiugnere il mouimento del Sole fatto nel detto
              <lb/>
            ſpacio, et raccogliere tutto il mouimento della Luna fatto in quello ſpacio, & </s>
            <s xml:id="echoid-s18821" xml:space="preserve">partirlo nel numero de i giorni di quello ſpacio, & </s>
            <s xml:id="echoid-s18822" xml:space="preserve">di piu lo intie-
              <lb/>
            ro circolo partito nel numero de igiorni Lunari, et de i rotti, et ſimilmĕte il numero de i gradi delle riuolutioni del predetto ſpacio, partito nel
              <lb/>
            numero de i giorni dello iſteſſo ſpacio ci fa manifeſto quanto per ogni giorno la Luna ſi diparta dal Sole, che tanto uuol dire, quanto il mouimĕ
              <lb/>
              <note position="left" xlink:label="note-0225-01" xlink:href="note-0225-01a" xml:space="preserve">10</note>
            to d’un giorno della Luna, & </s>
            <s xml:id="echoid-s18823" xml:space="preserve">di piu del mouimento del Sole. </s>
            <s xml:id="echoid-s18824" xml:space="preserve">Non altrimenti il numero delle riuolutioni della Luna nello Epiciclo conuertito in
              <lb/>
            gradi, & </s>
            <s xml:id="echoid-s18825" xml:space="preserve">partito nel numero de i gradi dello interuallo ci farà conoſccer quanto ſi moue la Luna ogni di nello Epiciclo. </s>
            <s xml:id="echoid-s18826" xml:space="preserve">In queſto modo ſi com
              <lb/>
            prende il mouimento della lŏghezza ogni dì eſſer digradi 13 minuti 10. </s>
            <s xml:id="echoid-s18827" xml:space="preserve">ſeconde 35. </s>
            <s xml:id="echoid-s18828" xml:space="preserve">Et il mouimento dello Epiciclo eſſer gradi 13 minuti 3. </s>
            <s xml:id="echoid-s18829" xml:space="preserve">ſecŏ
              <lb/>
            de 54. </s>
            <s xml:id="echoid-s18830" xml:space="preserve">Longo ſarebbe à capitulare tutto quello, che nella ſpeculatione della Luna ſi può dire, peròriportandoſi à gli ſcrittori, che di queſto co-
              <lb/>
            pioſamente, & </s>
            <s xml:id="echoid-s18831" xml:space="preserve">bene hanno ſcritto, paſſeremo à gli altri pianeti à i due ſottopoſti al Sole, cioè à Mercurio, & </s>
            <s xml:id="echoid-s18832" xml:space="preserve">à Venere. </s>
            <s xml:id="echoid-s18833" xml:space="preserve">Dico, che gli Aſtrono
              <lb/>
            mi hanno auuertito queſti due pianeti partirſi dal Sole, & </s>
            <s xml:id="echoid-s18834" xml:space="preserve">allontanarſi fino à certi termini dall’una parte, & </s>
            <s xml:id="echoid-s18835" xml:space="preserve">dall’altra, & </s>
            <s xml:id="echoid-s18836" xml:space="preserve">nel mezzo del loro
              <lb/>
            andare uerſo il Sole, & </s>
            <s xml:id="echoid-s18837" xml:space="preserve">del loro ritorno congiugnerſi con il Sole, ma quando erano dalle bande del Sole nelle loro ſtationi trouarſi diſcostißi-
              <lb/>
            mi dal Sole, & </s>
            <s xml:id="echoid-s18838" xml:space="preserve">però conchiuſero, che ſimil progreſſo, et regreſſo, ſi doueua ſaluare con l’Epiciclo, di modo, che lo cĕtro dello Epiciclo col Sole à
              <lb/>
            torno ſi moueſſe, & </s>
            <s xml:id="echoid-s18839" xml:space="preserve">che l’uno, & </s>
            <s xml:id="echoid-s18840" xml:space="preserve">l’altro pianeta tanto dal Sole s’allontanaſſe, quanto daua loro la longhezza dello Epiciclo, ma perche racco-
              <lb/>
            gliendo inſieme due contrarie, et grandißime distanze de i detti pianeti dal Sole, trouarono come nŏ in ogni luogo ſi ſeruaua la iſteſſa quantita,
              <lb/>
              <note position="left" xlink:label="note-0225-02" xlink:href="note-0225-02a" xml:space="preserve">20</note>
            & </s>
            <s xml:id="echoid-s18841" xml:space="preserve">che quella ſomma non poteua creſcere, ſe non per lo accoſtamento dello Epiciclo, ne ſcemare ſe non per lo apartamento di eſſo Epiciclo,
              <lb/>
            per loquale lo Epiciclo hora ſi accoſtaſſe hora ſi allontanaſſe dal centro del mondo, però à i due pianeti inferiori, & </s>
            <s xml:id="echoid-s18842" xml:space="preserve">lo Eccentrico, & </s>
            <s xml:id="echoid-s18843" xml:space="preserve">lo
              <lb/>
            Epiciclo ſono ſtati conceßi, con queſta conditione, che lo Eccentrico ſempre portaſſe à torno lo Epiciclo col Sole, & </s>
            <s xml:id="echoid-s18844" xml:space="preserve">quello iſteſſo fuſſe
              <lb/>
            mezzano mouimento del Sole & </s>
            <s xml:id="echoid-s18845" xml:space="preserve">del pianeta, & </s>
            <s xml:id="echoid-s18846" xml:space="preserve">lo Epiciclo portaſſe il pianeta di quà, & </s>
            <s xml:id="echoid-s18847" xml:space="preserve">di làrimouendo dal Sole, & </s>
            <s xml:id="echoid-s18848" xml:space="preserve">molto bene quadraſ-
              <lb/>
            fe, per ſaluare i regreßi, & </s>
            <s xml:id="echoid-s18849" xml:space="preserve">i mouimenti delle larghezze. </s>
            <s xml:id="echoid-s18850" xml:space="preserve">Hora per ſapere in che modo ſi habbia la quantita del mouimento. </s>
            <s xml:id="echoid-s18851" xml:space="preserve">Io dico che
              <lb/>
            oſſeruar biſogna il luogo del pianeta in nel punto del Zodiaco, & </s>
            <s xml:id="echoid-s18852" xml:space="preserve">aſpettar tanto, che di nouo il pianeta ritorni allo ſteſſo luogo,
              <lb/>
            con questa conditione, che egli ſia in egual diſtanza dal luogo di mezzo del Sole nell’uno, & </s>
            <s xml:id="echoid-s18853" xml:space="preserve">l’altro luogo, percioche allhora il piane-
              <lb/>
            ta hauerà fornito le intiere riuolutioni dell’uno, & </s>
            <s xml:id="echoid-s18854" xml:space="preserve">l’altro mouimento prima nello Eccentrico, perche il punto dello Epiciclo, ſerà ri-
              <lb/>
            tornato allo ſteſſo punto, poi nello Epiciclo, perche il pianeta alla diſtanza iſteſſa del Sole tornato, hauerà ancho ritrouato lo iſteſſo pun-
              <lb/>
            to dell’Epiciclo. </s>
            <s xml:id="echoid-s18855" xml:space="preserve">Per queſte oſſeruationi ſi hauer à il tempo traſcorſo, et il numero delle riuolutioni, imperoche ne i tre pianeti di ſopra quan-
              <lb/>
              <note position="left" xlink:label="note-0225-03" xlink:href="note-0225-03a" xml:space="preserve">30</note>
            te ſaranno ſtate le riuolutioni dello Epiciclo, & </s>
            <s xml:id="echoid-s18856" xml:space="preserve">le riuolutioni dello Eccentrico, ponendo inſieme il numero di queſte, et di quelle, tanto nello ſteſ
              <lb/>
            ſo ſeranno ſtate le riuolutioni del Sole, ma ne i due inferiori il numerro delle riuolutioni dello Eccentrico, è lo steſſo col numero delle riuolutio
              <lb/>
            ni dello Epiciclo conoſciuto che ſarà da noi appreſſo al uero il tempo d’una riuolutione. </s>
            <s xml:id="echoid-s18857" xml:space="preserve">La onde il numero delle riuolutioni moltiplicato per
              <lb/>
            360 produr à gradi, & </s>
            <s xml:id="echoid-s18858" xml:space="preserve">il numero de i gradi partito per lo numero de i giorni dello ſpacio delle oſſeruationi fatte ci darà la quantità del moui-
              <lb/>
            mento diurno. </s>
            <s xml:id="echoid-s18859" xml:space="preserve">Ma che ordine ne i progreßi, & </s>
            <s xml:id="echoid-s18860" xml:space="preserve">ne i ritorni & </s>
            <s xml:id="echoid-s18861" xml:space="preserve">quale neceßità loro ſia, dirò breuemente prima auuertendo, che la diuerſità ò
              <lb/>
            contrarietà di questa apparenza conuno di due modi ſi può ſaluare, ò che di dia al pianeta ſolo il deferente Eccĕtrico, ouero lo Epiciclo col de-
              <lb/>
            ferente Concentrico, cioè à quello modo, che in ciaſcuno de i tre pianeti di ſopra raccolti inſieme i mouimenti dello Epiciclo nel Concentrico, et
              <lb/>
            del pianeta nello Epiciclo ſieno eguali al mezzano mouimento del Sole, ma il centro dello Eccĕtrico ſecondo l’ordine de i ſegni ſi moua inſieme
              <lb/>
            col Sole, & </s>
            <s xml:id="echoid-s18862" xml:space="preserve">il pianeta con quella uelocita ſi moua con laquale ſi moue l’Epiciclo nel Concentrico in modo, che quella linea, che uiene dal Centro
              <lb/>
            ch’è paralella alla linea, che dal Centro dello Eccentrico, al Centro del pianeta è tirata, termini il mezzano mouimento del pianeta, & </s>
            <s xml:id="echoid-s18863" xml:space="preserve">questo
              <lb/>
              <note position="left" xlink:label="note-0225-04" xlink:href="note-0225-04a" xml:space="preserve">40</note>
            ne i tre ſoperiori ſi oſſerua, ma ne i due inferiori pongaſi il mouimento dello Epiciclo nel Concentrico, eguale al mezzano mouimento del Sole,
              <lb/>
            ma il mouimento del pianeta nello Epiciclo, & </s>
            <s xml:id="echoid-s18864" xml:space="preserve">il mouimento del Centtro dello Eccentrico ſia eguale alla ſomma raccolta dal mezzano mouimĕ
              <lb/>
            to del Sole, & </s>
            <s xml:id="echoid-s18865" xml:space="preserve">da quel mouimento, che fa il pianeta nello Epiciclo, & </s>
            <s xml:id="echoid-s18866" xml:space="preserve">il pianeta ſimilmente con la isteſſa uelocità ſi moua, con laquale ſi moue lo
              <lb/>
            Epiciclo nel Concentrico, con la iſteſſa conditione detta di ſopra, cioè in modo che quella linea, che uiene dal Cĕtro, che è paralella alla linea, che
              <lb/>
            dal Centro dello Eccentrico al centro del pianeta, è tirata, termini il mezzano mouimento del pianeta, & </s>
            <s xml:id="echoid-s18867" xml:space="preserve">ancho aggiuntaui queſta conditione
              <lb/>
            in quanto à tutti, che i diametri dello Eccentrico, & </s>
            <s xml:id="echoid-s18868" xml:space="preserve">del Concentrico ſiano proportionati al Semidiametro dello Epiciclo, & </s>
            <s xml:id="echoid-s18869" xml:space="preserve">all’uſcita del Cen
              <lb/>
            tro, & </s>
            <s xml:id="echoid-s18870" xml:space="preserve">coſi all’uno, & </s>
            <s xml:id="echoid-s18871" xml:space="preserve">all’altro modo nelle Stelle erranti ſi potria difendere la ragione del progreſſo, & </s>
            <s xml:id="echoid-s18872" xml:space="preserve">del regreſſo quanto alla diuerſità, & </s>
            <s xml:id="echoid-s18873" xml:space="preserve">
              <lb/>
            uarietà come per longa eſperienza compreſo hanno gli oſſeruatori delle Stelle, però ſu neceſſario dare la prima diuerſità allo Epiciclo, & </s>
            <s xml:id="echoid-s18874" xml:space="preserve">di-
              <lb/>
            fendere la ſeconda col deferente, ma quella ſola coſa era aſſai basteuole à far, che i deferenti di tutti i pianeti non faceſſero uno isteſſo Centro,
              <lb/>
            cioè la ſingularità del mouimento, cioè la ſuperiore, alla inferiore, & </s>
            <s xml:id="echoid-s18875" xml:space="preserve">perche questa communicatione non è stata auuertita ne i propi mouincn
              <lb/>
              <note position="left" xlink:label="note-0225-05" xlink:href="note-0225-05a" xml:space="preserve">50</note>
            ti de i pianeti, però non ci fu ordine di dar loro i Concentrici, ma accioche egli ſe intenda
              <lb/>
            bene à quale de i pianeti ſi dia il progreſſo, & </s>
            <s xml:id="echoid-s18876" xml:space="preserve">il regreſſo; </s>
            <s xml:id="echoid-s18877" xml:space="preserve">dirò, che imaginare douemo
              <lb/>
            due dritte linee, dal Centro tirate l’una che termine nelle parti Orientali dello Epiciclo,
              <lb/>
            l’altra nella parte Occidentale, à queſto modo quanto al mouimento del pianeta nello Epi
              <lb/>
              <figure xlink:label="fig-0225-01" xlink:href="fig-0225-01a" number="124">
                <description xml:id="echoid-description101" xml:space="preserve">h. k. l’Epiciclo’.
                  <lb/>
                b. il ſuo Centro.
                  <lb/>
                h.il ſuo giogo.
                  <lb/>
                n. l’@ ppoſto al giogo.
                  <lb/>
                c il Centro del Mondo.
                  <lb/>
                K. il punto della prima
                  <lb/>
                dimora.
                  <lb/>
                @ il punto della ſecon-
                  <lb/>
                da.
                  <lb/>
                h K o l’arco della ſe-
                  <lb/>
                conda.
                  <lb/>
                K. n. o l’arco del Re-
                  <lb/>
                greſſo
                  <lb/>
                h K l’arco della Di@
                  <lb/>
                rettione.</description>
                <variables xml:id="echoid-variables54" xml:space="preserve">H L A B K N O C</variables>
              </figure>
            ciclo, la Stella, che ander à per l’arco di ſopra nello Epiciclo, dico di ſopra alle due punti
              <lb/>
            del toccamento delle dette linee, ſi dirà andar inanzi, et far progreſſo, perche ella uà uer
              <lb/>
            ſo l’Oriente, ma nello arco inferiore ſi dirà retrograda, perche ritornerà mouendoſi à-
              <lb/>
            la contraria parte, ma ſtando ne i punti predetti, ſi dirà, che ella dimor, ò stia, perche
              <lb/>
            nel punto Orientale ſi farà rettrograda di dritta, & </s>
            <s xml:id="echoid-s18878" xml:space="preserve">nel punto Occidentale ſi farà drit-
              <lb/>
            ta di retrograda, benche nel Sole, & </s>
            <s xml:id="echoid-s18879" xml:space="preserve">nella Luna queſte coſe per lo contrario conſiderate
              <lb/>
              <note position="left" xlink:label="note-0225-06" xlink:href="note-0225-06a" xml:space="preserve">60</note>
            ſono, laqual ragione d’intorno al progreſſo, & </s>
            <s xml:id="echoid-s18880" xml:space="preserve">al regreſſo ſaria à baſtanza, ſe egli auue
              <lb/>
            niſſe, che il pianeta non ſi trouaſſe con altro mouimento, che col mouimento dello Epici-
              <lb/>
            clo, ma perche mentre il pianeta nello Epiciclo ſi riuolge lo Epiciclo ancho dello Eccĕtri
              <lb/>
            co è portato, però che appreſſo i punti detti del toccamento il pianeta benche quanto al
              <lb/>
            riuolgimento dello Epiciclo ſia in dimora, niente di meno dallo Eccentrico è portato uer-
              <lb/>
            ſo l’Oriente, & </s>
            <s xml:id="echoid-s18881" xml:space="preserve">coſi anchora è diretto, & </s>
            <s xml:id="echoid-s18882" xml:space="preserve">però è neceſſario, che i punti delle dimore ſia-
              <lb/>
            no alquanto inferiori à quelli punti, che nel toccamento fanno le predette linee; </s>
            <s xml:id="echoid-s18883" xml:space="preserve">che dal
              <lb/>
            Centro hauemo detto partirſi, & </s>
            <s xml:id="echoid-s18884" xml:space="preserve">coſi quelle linee non toccando, ma tagliando, & </s>
            <s xml:id="echoid-s18885" xml:space="preserve">parten
              <lb/>
            do lo Epiciclo, fanno ne i tagli i punti della dimora, & </s>
            <s xml:id="echoid-s18886" xml:space="preserve">peròè neceſſario, che quei punti
              <lb/>
            ſiano in quella parte della circŏferenza dello Epiciclo, doue il mouimento retrogrado del
              <lb/>
            pianeta dello Epiciclo coſi contraſta col mouimĕto del deferĕte, che quãto il pianeta, è por
              <lb/>
              <note position="left" xlink:label="note-0225-07" xlink:href="note-0225-07a" xml:space="preserve">70</note>
            tato all’occaſo dallo Epiciclo tanto l’ Epiciclo ſia ritornato dal deferente uerſo Leuante, & </s>
            <s xml:id="echoid-s18887" xml:space="preserve">à questo modo il pianeta dieguali ma contrari mo
              <lb/>
            uimenti portato pare, che egli dimori, & </s>
            <s xml:id="echoid-s18888" xml:space="preserve">ſi ſtia. </s>
            <s xml:id="echoid-s18889" xml:space="preserve">Et però il pianeta nel punto dello ſtato Orientale, che è detto prima dimora comincia à
              <lb/>
            ritornare: </s>
            <s xml:id="echoid-s18890" xml:space="preserve">imperoche iui il mouimento del pianeta nello Epiciclo comincia à ſuperare il mouimento dello Epiciclo nel deferente, ma nel pun-
              <lb/>
            to della dimora Occidentale, che ſi chiama ſeconda ſtatione il pianeta ritorna allo andar auanti, & </s>
            <s xml:id="echoid-s18891" xml:space="preserve">al progreſſo, percioche ſi rallenta nello Epi
              <lb/>
            c
              <unsure/>
            iclo il mouimento del pianeta, & </s>
            <s xml:id="echoid-s18892" xml:space="preserve">queste coſe da gli eſſempi ſoprapoſti ci ſono manifeste.</s>
            <s xml:id="echoid-s18893" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>