Vitruvius, I Dieci Libri dell' Architettvra di M. Vitrvvio, 1556

Table of figures

< >
[1] I DIECI LIBRIDELL’AR CHITETTVRA DI M.VITRVVIO TRADVTTI ETCOMMENTATI DA MONSIGNORBARBARO ELETTO PATRIARCAD’AQVILEGGIA.Con due Tauole, l’una di tutto quello ſi contiene periCapi nell’Opera, l’altra per dechiaratione di tuttele coſe d’importanza.IN VINEGIA PER FRANCESCO MARCOLINI CON PRIVILEGGI. MDLVI.
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[6] 8 16 12
[Figure 7]
[Figure 8]
[Figure 9]
[10] a b Linea drittae d Linea tortae Angoli giustif Anguli larghio Anguli ſtretti h i K Circuloh g i Diametrog K Raggiog Centrol m n Arco intierol m Cordan p Saettar Arco ſcemoſ Arco compoſto a b c d e e e e f o f o k b 3 1 T S n l p m
[Figure 11]
[12] *** Leuante Solanus. P Ponente Fauonius. Zefirus. T Trammontana Septentrio Aparctias. O Oſtro Auſter. M Maeſtro Caurus. L Libecchio, ò Garbino, Affricus. S Sirocco, Eurus. G Greco, Aquilo. @ Sirocco Leuante. 2 Oſtro Sirocco, Euro Auster. 3 Oſtro Garbino, Libonatus, ouer Auſtro Affricus. 4 Ponente Garbino. 5 Ponente Maeſtro. 6 Maeſtro Trammontana. 7 Greco Trammontana. 8 Greco Leuante. 9 tra Sirocco, è Sirocco Leuante. Et coſi ua ſeguendo. come dimoſtra la figura. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 L M V G S O P T***
[13] A Aleſſandria.B Siene.A D il Gnomone.C il Centro del Mondo.F H C D G. iraggi del Sole.A D G A C B. gliAnguli corriſpondenti. e f d b a c
[14] A Solanus.B Septentrio.C Fauonius.D Meridies.E Euras.F Affricus.G Caurus.H AquiloI Carbas.K Boreas.L Supernas.M Gallicus.N Trhaſcias.O Corus.P Circius.Q Etheſiœ.R Argeſtes.S Subueſperus.T Libonotus.V Altanus.X Leuconotus.Y Vulturnus.Z Cecias.* Ornithiœ. a b c d e f g h N F X n t s q p d n m l R l
[15] Incrociamento. f i l m g d h n o k d c e b
[16] STRADARASTELLOTERRAPIENOPAS-110 FOSSO *** S O G P M T G 20 40 50 55 110 220
[17] piedi 250piedi 110piedi 60PIEDI.iispiedi 80piedi 50 L I S
[Figure 18]
[Figure 19]
[Figure 20]
[21] Renculatoiucerto
[22] tetradoron pentadoron di doron A b e Le ſorti di murare dette di ſopra. C Eguale muratura detta Iſodomon. D La Fabrica riempita detta Emplecton. F Diſeguale muratura detta Aniſodomon. G La muratura de Greci con i Mattoni detti Diatoni ſrontati ſopra li Anguli. H Le Orthoſtrate. 4 4 4 4 4 5 5 5 5 5 d c b a h g f e
[Figure 23]
[Figure 24]
[Figure 25]
[Figure 26]
[Figure 27]
[28] LA PIANTA DELLO ASPETTO DETTO PERIPTEROS CIOE1 ALATO A´ TORNO.
[Figure 29]
[Figure 30]
< >
page |< < (62) of 325 > >|
7062LIBRO
Adunque la c al d. e composta dalla a al b, & dalla f. alla e. Il duodecimo modo ſi caua dall’argomento di ſopra trapposto. b. & ſ. tra la a. & e.
Il terzodecimo ſimilmente e, che la proportione tra c. & f. ſerà compoſta delle proportioni tra a & b. & tra d. & e. poſto d. & e. trac.
&
f. ſerà compoſta la c & la f. dalla c al d. della d al e. & della e alla f. ma la c al d, & la e alla f. compongono la a al b. adunque la
c al f.
e composta della à al b. & della d. alla e. Il quartodecimo ſi caua dal precedente, ſi come il ſecondo dal primo trapposta b. & d, tra la a
&
la e. Il quintodecimo ė che ancho la d & la e è compoſta della b. alla a. & della c al f, perche poſto c. & f. tra d & e. la d alla e ſerà compoſta
dalla d.
al c. dalla c alla f. & dalla f alla e. ma la d. alc. & la f. alla e. compongono la b alla a. perche le conuerſe compongono la a al b. per la
ſoppoſitione adunque la d alla e.
è composta della b. alla a. & dalla c al f. Il decimoſesto modo. con l’argomento del ſecondo, c dedutto dal pre
cedente trappoſto a &
c tra b & ſ. Il decimoſettimo modo e che la e. & la f. ſi compone della a al b. & dalla d al c. percioche per la conuerſa
del quinto modo, la e alla a ſi fa della f.
al b. & della d al c. il reſto ſi ordina, come s’è fatto nella prima deduttione del modo undecimo. Il De-
cimo ottauo modo con l’argomento del ſeeondo ſi caua dal precedente b &
d. trappoſtitra a. & c. Seguitarebbe che io dimoſtrasſi, che i modi
1110 utili non ſono compoſti de glialtri, &
che gli inutili non ſono compoſti. Ma queſto per hora uoglio che ſi preſupponga per non eſſer piu te-
dioſo.
Baſtimi hauer diſopra dato alquanto di luce alle coſe dette da Alchindo, & qui ſotto cauarne una notabile propoſitione, che ne contie-
ne dieciſette bellisſime, &
utilisſime da eſſer da ogni ſorte di perſone ſtudioſe eſſercitate, & ſono queſte, lequali ci ſerueno à rittrouare qua-
lunque numero di quelli ſei, che ci foſſe ignoto.
Se la proportione che ė tra’l primo & il ſecondo è compoſta delle proportioni che ſono tra il
terzo, e’l quarto, &
tra il qninto e’l ſesto, la iſteſſa ſerà compoſta dalle proportioni, che ſono tra il terzo, e’l ſeſto, & tra’l quinto e’l quar
to.
Ecco ne i numeri un, dua, tre, quattro, ſei noue, 1 2 3 4 6 9. Dalla ſubſeſquiterza che ė tra tre, e quattro, & dalla ſubſeſqualtera
che è tra ſei, &
noue, ne naſce la ſotto doppia, che è tra un & due, io dico che la iſteſſa ſotto doppia naſcer à dalle proportioni, che ſono tra il
terzo, &
il ſesto. cioė tra tre e noue, doue é la proportion ſottotripla, & dalla proportione che é tra’l quinto il quarto, che è ſei & quattro,
doue è la proportion ſeſqualtera, perche da una ſottotripla, &
da una ſeſqualtera naſce una ſotto doppia, come è tra uno e dua. Similmen-
te, ſe la proportione del primo al terzo, ſer à compoſta delle proportioni del ſecondo al quarto, &
dal quinto al ſeſto, come la proportione
2220 dell’un al tre, che è ſotto tripla, e compoſta delle proportioni del due al quattro, che è ſotto doppia, &
del ſei al noue, che é ſotto ſeſqualter a.
La isteſſa ne naſcerà dalle proportioni del ſecondo al ſeſto, cioe dal due al noue, che è ſotto quadrupla ſeſqualtera, & dal quinto al quarto, cioé
dal ſei al quattro, che è in proportione ſeſqualtera, perche da una ſotto quadrupla ſeſqualtera, e da una ſeſqualtera, ne naſce una ſotto tripla,
parimente ſe la proportione del primo al quinto, cioè del uno al ſei, doue è proportione ſotto ſeſcupla, ſer à fatta delle proportione del ſecondo
al ſesto, che è del due al noue, doue è proportione ſotto quadrupla ſeſquialtera, &
del terzo al quarto, che ſon tre e quattro, doue cade pro-
portione ſubſeſquiterza, la iſteſſa uenir à, &
del ſecondo al quarto, che é tra due e quattro, doue cade proportione ſotto doppia, & dal terzo
al ſesto, come da tre à noue, doue cade proportione ſottotripla, perche ne naſcer à una ſottoſeſcupla coſi ancho ſe la proportione del ſecondo al
quarto che é proportione ſottodoppia, come da un à quattro, naſcer à dalla proportion del primo al terzo, come è tra uno e tre, doue cade pro-
portione ſottotripla, et dalla proportione del ſeſto al quinto, come è da noue à ſei, doue cade proportion ſeſquialtera, perche da una ſottotripla,
et da una ſeſquialtera ne naſce una ſottodoppia, la isteſſa proportione naſcerà dal primo al quinto, che è da un al ſei doue cade proportione ſotto
3330 ſeſcupla, &
dal ſesto al terzo come da noue à tre, doue cade proportione tripla, perche da una ſottoſeſcupla, & da una tripla ne naſce una ſotto-
doppia, come ė da due à quattro, coſi ancho, ſe la proportione che ha il ſecõdo al ſeſto, come é tra due, et noue, doue cade proportion ſotto quadru
pla ſeſquialtera, naſce dalla proportione del primo al quinto, come da un à ſei, doue é proportione ſottoſeſcupla, &
da quarto al terzo come
da quattro è tre, doue è proportione ſeſquiterza.
La iſteſſa proportione ſotto quadrupla ſeſquialtera naſcer à dalla proportione del primo
al terzo, cioė del un al tre, doue é proportione ſotto tripla, &
dal quarto al quinto, come da quattro è ſei, doue è proportion ſotto ſeſquialte
ra, perche da una ſotto tripla, &
da una ſottoſeſquialtera ne naſce una ſotto quadrupla ſeſquialtera.
Similmente ſe la proportion del terzo al quarto come ė da tre à quattro doue cade proportione ſotto ſeſquiterza, naſcerà dalla proportione del
primo al ſecondo, come da uno à due, doue cade proportione ſotto doppia &
dal terzo al quinto, come da noue à ſei, doue cade proportione
ſeſquialtera, la isteſſa proportione naſcerà dalla proportione, che è tra il primo, &
il quinto, che è uno & ſei, doue cade proportione ſot-
toſeſcupla, &
del ſeſto al ſecond, o come da noue à due, doue cade proportione quadrupla ſeſquialtera, perche da una ſotto ſeſcupla, &
4440 da una quadr upla ſe ſquialtera ne naſce una ſotto ſeſquiterza.
Oltr a di queſto, ſe la proportione che ė tra’l terzo e il ſeſto, che è ſottotripla come da tre a noue, naſce dalla proportione nel primo al ſecondo
come da uno à due, che ſottodoppia, &
dal quarto al quinto, che è ſottoſeſquialtera come tra quattro c ſei, la iſteſla naſcerà dal pri-
mo al quinto, come da un a ſei doue cade la ſottoſcupla, &
dal quarto al ſecondo come da quattro à due, doue cade la ſottodoppia, perche
da una ſotto doppia, &
da una ſotto ſeſquiterza ne naſce la ſottotripla. Di nouo ſe la proportione del quarto al quinto cioè del quattro
e’l ſei doue cade la ſottoſeſquialtera, e compoſta del ſecondo al primo cioè dal due, &
uno doue cade la doppia, & del terzo al ſeſto, come del
tre al noue, doue cade la ſotto tripla, la isteſſa, ſotto ſeſquialtera naſcerà dalla proportione del ſecondo al ſeſto, &
del terzo al primo.
Finalmente ſe la proportione, che è del quinto al ſeſto, come è tra ſei, & noue doue cade la ſottoſeſquialtera, naſcerà dalle proportioni del pri-
mo al ſecondo come da un à due doue cade la ſottodoppia, &
dal quarto, al terzo doue cade la ſeſquiterza, la iſteſſa naſcerà, da quella, che
e dal primo al terzo, che e la ſottotripla, come da un à tre, &
da quella, che è dal quarto al ſecondo, che ė la doppia, come dal quattro al due,
5550&
tanto ſia detto delle proportioni, & delle loro comparatione, & riſpetti, lequal coſe diligentemente eſaminate, eſſercitate, & manda-
te à memoria, &
applicate alle ſcientie, & alle pratiche faranno parere glihuomini miracoloſi. Ma tempo è che aſcoltiamo Vit.
CAP. I. CHE LA RAGIONE DELLE MISVRE E STATA
DA GLI ANTICHI PIGLIATA DALLE MISV-
RE DEL CORPO HVMANO.
LA Compoſitione de i tempi ſi fa di corriſpondenza di miſure; la cui ragione eſſer deue con ſomma
6660 diligenza de gli Architetti conoſciuta.
La ſomma di tutto quello, che dice Vit. cerca le fabriche pertinenti alla religione, è che prima ſi dimoſtra la necesſità
di conoſcer la ſorza delle miſure, dapoi ſi dichiara donde é stata preſa la ragiome delle miſure, &
perche prima ſi co-
mincia à trattare della compoſitione de i Tempi conſecrati alli Dei, &
in questo trattamento ſi conſidera prima tutto
quello, che allo aſpetto noſtro da diuerſe figure, &
forme di Tempi ſi rappreſenta di fuori, & da lontano, & in queſta
parte ſi tratta di cinque maniere di Tempi con le ragioni di ciaſcuna, &
ſi dichiara il modo di fondare, l’ornamento delle colonne, de gli
architraui, de i capitelli, de i coperti, &
d’altre coſe pertinenti à quello, che di fuori ſi uede, come ſono gradi, poggi, ſporti, piedeſtal
li, raſtremamenti, gonfiature, aggiunte, ſcanellature, &
ſimil coſe ſecondo i generi delle fabriche, paßa poi alle parti di dentro, & diſtin
tamente ragiona delle miſure, lunghezze, larghezze, &
altezze de i Tempi, delle celle, de gli Antitempi, de gli altari, delle porte, &
di tutti gli ornamenti, che conuengono alle predette parti, la onde niente ci laſcia al deſiderio nostro, conchiudendo come ho detto, nel ter-
7770 zo, &
nel quarto libro tutta la materia preſente. Dice adunque Vitru. che per edificar i tempi biſogna conoſcer la forza delle miſure, &
queſta douer eſſer da gli Architetti con ſomma diligenza tenuta, &
appreſa.
Di queſto la ragione e in pronto, perche ſe bene ogni fabrica eſſer deue con ragione compartita, & miſurata, nientedimeno conſiderando noi
quanto la diuinità eccede la humanità, meritamente douemo quanto ſi puo di bello, &
di raro ſempre mai operare per honore, & oſſer-
uanza delle diuiue coſe, &
perche diuina eoſa e in terra l’humana mente; però quella con ogni ſtudio eſſercitar douemo, accioche honor amo
i Dei, che Dei ueramente ſono i ueri amici di Dio.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index