Vitruvius, I Dieci Libri dell' Architettvra di M. Vitrvvio, 1556

Table of figures

< >
[111] m p a b x n g e u i h o f l k c r d q s t
[112] a b n e k p b l i q o d f g w c r
[113] c p l k b m i o b a e d f o
[114] d c b e g l n o k m
[115] c b g b d n m l k e a
[116] d f g a e b l c
[117] l h c e k a f g i b
[118] a e b c d f g b a c e d b c d e f g h
[119] a l’occhio nella ſoperficie della terra.b. il Centro della terra.a c la linea del luogo apparente.b c. la linea del uero luogo.a b c. lo angulo della diuerſità. c a b
[120] a b il Deferente.c il ſuo Centro.d e l’Epiciclo.a il ſuo Centro.f. il centro del Mondo.a il Giogo del Deferente.b l’oppoſto.d il Giogo dell Epiciclo.e l’oppoſto. d a e c f b
[121] a b g. il Concentrico.d il ſuo Centro.e z b lo Eccentrico.t il ſuo Centro.K z lo Epiciclo.b. il ſuo Centro.d t. b z. Egualit z. d b. Eguali.d. z paralellogrammo.il moui \\ mento { del Cõcentrico b d a \\ dell’Epiciclo K b z \\ dello Eccẽtrico z te } anguli \\ eguali \\ il Sole ſi uede all’uno, & all’ al-tro modo nel punto z. per la li-nea d. z. E A T D H G Z K B
[122] a b g. lo Eccentico.a il ſuo Centroe il Centro del Mondoa d g. la linea del Giogo.b il Centro del Solee z la linea del mezzano mouimentoparalella alla b d.e b la linea del uero mouimento.b e z l’angulo dello agguagliamento.A b g. il Concentrico a b h d f 2 3 @
[123] d il ſuo Centrot f lo Eccentricoh il ſuo Centroe z lo Epiciclo.g il ſuo Centro.d h. g z. eguali.d z il paralellogrammo.il moui \\ mento{del Cõcètrico a d g. \\ dello Epiciclo e g.z. \\ dell’ Eccétrico fh z. (del giogo e dell’ Eccètrico a d fGil ang uli f h z. e g z. egualiLo Angulo a d g. eguali à gli angolia d ſ. ſ d g. a b d e g 2
[124] h. k. l’Epiciclo’.b. il ſuo Centro.h.il ſuo giogo.n. l’@ ppoſto al giogo.c il Centro del Mondo.K. il punto della prima dimora.@ il punto della ſecon-da.h K o l’arco della ſe-conda.K. n. o l’arco del Re-greſſoh K l’arco della Di@ rettione. H L A B K N O C
[Figure 125]
[Figure 126]
[Figure 127]
[Figure 128]
[Figure 129]
[Figure 130]
[Figure 131]
[132] orizonte eqwnot il poolo
[Figure 133]
[134] A B Il Gnomone diuiſo in noue parti.B T La Linea del piano.E A I L’Orizonte.Q P L’Aſſe del Mondo.B N P Il Meridiano.H G Lacotomus.R C G Monacus, cioè il cerchio de i meſi.N A X F C. Il Raggio Equinottiale.K A T Il Raggio della Bruma.L A R Il Raggio del Solstitio.K O R Il Semidiametro del Solſtitio.L M G Il Semidiametro della Bruma.B T L’ombra Meridiana della Bruma.B C L’ombra Meridiana de l’ Equinottio.B R L’ombra Meridiana del Solſtitio. K e q F u parte della Itate acse o a 9 8 7 6 5 4 3 2 1 b h r mcridi p parte del verno m s lacoto x f g imonaco c linea del. piano t
[135] obelisco gio@ no notte 11 8 ♊ ♋ 14 9 ♉ ♌ 13 10 ♈ ♍ ♓ ♎ ♒ ♏ ♑ ♐ 8 15
[136] b ♋ ♌ ♍ 5 ♎ XI ♏ 6 a ♐ 7 X f 8 IX 9 VIII 10 11 VII d 12 b VI e 1 V 2 IIII 3 III 4 II g ♑ ♋ ♒ 5 ♓ 6 C I ♈ ♉ ♊ l ♋
[Figure 137]
[138] c k a 90 80 o 70 f 60 50 d 45 40 30 20 b 10 9 5 4 c 8 7 6 t 90 80 70 60 l 7 m e 50 l’eguin. 45 40 30 8 7 6 20 4 5 6 7 8 d 9 8 10 9 10 10 9 10 11 11 11 a g f c 12 h 12 i q 1 1 1 2 2 2 3 3 4 e 3 4 5 5 8 7 6 6 4 45 ilpolo k 5 6 n
[139] Hore 8. Min. 34.Hore 12.Hore. 15 Min. 26. l a ♑ ♐ ♒ ♏ g ♓ ♎ h c b ♈ ♍ ♉ ♌ f 60 ♊ ♋ 50 40 30 20 10 k o
[140] ♋ ♌ ♍ ♎ ♏ ♐ 8 7 6 5 4 3 2 1 a e 12 a 11 10 9 8 7 6 5 4 ♊ ♉ ♈ ♓ ♒ ♑
< >
page |< < (101) of 325 > >|
    <echo version="1.0RC">
      <text xml:lang="it" type="free">
        <div xml:id="echoid-div245" type="section" level="1" n="33">
          <pb o="101" file="0107" n="116" rhead="TERZO."/>
          <p style="it">
            <s xml:id="echoid-s9032" xml:space="preserve">Quello che dice Vitr. </s>
            <s xml:id="echoid-s9033" xml:space="preserve">è, che poſte le baſe, ſopra di eſſe ſi deono porre le colonne, ma con diſſegno, & </s>
            <s xml:id="echoid-s9034" xml:space="preserve">leggiadria. </s>
            <s xml:id="echoid-s9035" xml:space="preserve">Delle colonne altre ſono nelle
              <lb/>
            cantonate, altre ſonotra quelle: </s>
            <s xml:id="echoid-s9036" xml:space="preserve">Queste mediane ſi ch@amano da Vit. </s>
            <s xml:id="echoid-s9037" xml:space="preserve">quelle angulari, uuole Vitr. </s>
            <s xml:id="echoid-s9038" xml:space="preserve">che le mezane ſiano dritte à piombo nel lo-
              <lb/>
            ro mezzo collocate, ma quelle de gli anguli ſiano nella parte di dentro piane, & </s>
            <s xml:id="echoid-s9039" xml:space="preserve">ſenza raſtremamento, & </s>
            <s xml:id="echoid-s9040" xml:space="preserve">queſto forſe è ſatto, perche ſcontri-
              <lb/>
            no con gli anguli del parete della cella, & </s>
            <s xml:id="echoid-s9041" xml:space="preserve">dicono queſti oſſeruatori, che rieſcono bene alla uiſta. </s>
            <s xml:id="echoid-s9042" xml:space="preserve">Similmente raſtremate non ſono quelle, che
              <lb/>
            ſono appoggiate al parete dirimpeto alle angulari dico da i lati del parete, perche tanto queſte quanto quelle di dentro uia non hanno con-
              <lb/>
            trattione, ma il loro lato interiore ua dritto à piombo, benche pare che Vit. </s>
            <s xml:id="echoid-s9043" xml:space="preserve">per quelle che uanno dalla deſtra, & </s>
            <s xml:id="echoid-s9044" xml:space="preserve">dalla ſiniſtra nelli lati
              <lb/>
            del tempio, intenda, che ſi debbia porre ſopra le cantonate due colonne una che ſerua alla ſronte, l’ altra al lato del Tempio, ma queſto non
              <lb/>
            ſtimo io che ſia, perche le miſure de i uani non ci ſeruerebbono togliendo lo ſpatio di due colonne ad un lato del Tempio.</s>
            <s xml:id="echoid-s9045" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s9046" xml:space="preserve">Poſti i fuſti delle colonne ſeguita la ragione de i capitelli. </s>
            <s xml:id="echoid-s9047" xml:space="preserve">Queſti ſe ſeranno piumazzati, ſideono ſormar con queſte
              <lb/>
            Simmetrie, che quanto ſerâ groſſa la colonna da piedi aggiuntaui una dieciottaua parte del fuſto da baſſo, tanto ſia
              <lb/>
              <note position="left" xlink:label="note-0107-01" xlink:href="note-0107-01a" xml:space="preserve">10</note>
            longo, & </s>
            <s xml:id="echoid-s9048" xml:space="preserve">largo l’Abaco, ò Dado che ſi dica, ma la groſſezza di quelli cõ la Voluta ſia per la metà, douemo poi retirarſi
              <lb/>
            dall’ eſtremità del Dado nella parte di dentro per far le fronti delle Volute due, & </s>
            <s xml:id="echoid-s9049" xml:space="preserve">mezza di quelle parti, & </s>
            <s xml:id="echoid-s9050" xml:space="preserve">lõgo il da-
              <lb/>
            do da tutte quattro le parti delle Volute appreſſo la quadra dell’eſtremità del dado mandar in giu le linee, che Catheti
              <lb/>
            dette ſono, & </s>
            <s xml:id="echoid-s9051" xml:space="preserve">quella groſſezza del Capitello gia preſa diuidere in noue parti e mezza, una parte e mezza ſia data alla
              <lb/>
            groſſezza del dado, & </s>
            <s xml:id="echoid-s9052" xml:space="preserve">dell’ altre otto faccianſi le Volute. </s>
            <s xml:id="echoid-s9053" xml:space="preserve">Dapoi dalla linea, che longo l’ eſtremità dell’ A baco, o Da-
              <lb/>
            do, all’ingiù ſerà mandata, egli ſi deue ritirare, per una parte e mezza in dentro, & </s>
            <s xml:id="echoid-s9054" xml:space="preserve">mandarne giu un’ altra, indi
              <lb/>
            partite ſiano queſte linee in modo, che quattro parti e mezza laſciate ſiano ſotto il Dado, alhora in quel luogo, che
              <lb/>
            diuide quattro e mezza, & </s>
            <s xml:id="echoid-s9055" xml:space="preserve">tre e mezza, ſegnato ſia il centro dell’occhio, & </s>
            <s xml:id="echoid-s9056" xml:space="preserve">ſu quel centro in giro tirata ſia una cir-
              <lb/>
            conferenza tanto grande in Diametro, quanto è una delle otto parti, quella ſerà per la grandezza dell’ occhio. </s>
            <s xml:id="echoid-s9057" xml:space="preserve">& </s>
            <s xml:id="echoid-s9058" xml:space="preserve">in
              <lb/>
            quella ſia tirato un Diametro, che riſponda al Catheto, poi dal di ſopra ſotto il dado minuito ſia mezzo ſpacio del-
              <lb/>
              <note position="left" xlink:label="note-0107-02" xlink:href="note-0107-02a" xml:space="preserve">20</note>
            l’occhio cominciato in ciaſcuno giro delle quarte, ſin che ſi peruenga ſotto l’iſteſſa quarta, che è ſotto’l Dado, la
              <lb/>
            groſſezza del Capitello coſi farſi deue, che di noue parti è mezza tre parti inanzi pendino ſotto il Tondino della
              <lb/>
            ſommità della colonna, & </s>
            <s xml:id="echoid-s9059" xml:space="preserve">aggiontoui alla gola il reſtante ſi dia al Dado, & </s>
            <s xml:id="echoid-s9060" xml:space="preserve">al Canale, lo ſporto della gola ſia oltra la
              <lb/>
            quarta del Dado per la grandezza dell’occhio.</s>
            <s xml:id="echoid-s9061" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s9062" xml:space="preserve">Sotto il tondino, ouero Aſtragalo, che ſi dica tre parti delle noue e mezza ſi diano, il reſtante delle noue è mezza che ſono ſei, & </s>
            <s xml:id="echoid-s9063" xml:space="preserve">mezza ſi
              <lb/>
            da al Dado al Canale, & </s>
            <s xml:id="echoid-s9064" xml:space="preserve">alla Gola, ò Cimaſa, ma dell’ Abaco ſe ne è detto però dice Vit. </s>
            <s xml:id="echoid-s9065" xml:space="preserve">adempto Abaco, cioè leuatone l’Abaco, del qual hauemo
              <lb/>
            detto, che ſe gli da una parte e mezza, il reſto ſi da al Canale, & </s>
            <s xml:id="echoid-s9066" xml:space="preserve">alla Cimaſa del Dado, e ponendoui il Dado in quel conto, ſtanno bene, & </s>
            <s xml:id="echoid-s9067" xml:space="preserve">
              <lb/>
            non ſi deono mutare, come uogliono alcuni dicendo, adempto Abaco, ma addito Abaco, ſei parti & </s>
            <s xml:id="echoid-s9068" xml:space="preserve">mezza adunque ſi comparteno al Dado,
              <lb/>
            al Canale, & </s>
            <s xml:id="echoid-s9069" xml:space="preserve">alla Cimaſa, una & </s>
            <s xml:id="echoid-s9070" xml:space="preserve">mezza ſe ne da al Dado, una allo Aſtragalo, e Tondino, che tanto quanto la grandezza dell’ occhio, le al-
              <lb/>
            tre quattroſi danno alla Cimaſa, & </s>
            <s xml:id="echoid-s9071" xml:space="preserve">al Canale, itermini del Canale ſono dimoſtrati dal primo giro della Voluta, lo ſporto della Cimaſa ò Go-
              <lb/>
              <note position="left" xlink:label="note-0107-03" xlink:href="note-0107-03a" xml:space="preserve">30</note>
            la è oltra il quadro del dado per la grandezza dell’ occhio.</s>
            <s xml:id="echoid-s9072" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s9073" xml:space="preserve">Le Cinte de i piumazzi habbiano del Dado queſto ſporto, che poſto un piede della ſeſtanel tetrante del Capitello, & </s>
            <s xml:id="echoid-s9074" xml:space="preserve">
              <lb/>
            allargato l’altro alla eſtremità della Cimaſa raggirandoſi tocchi l’eſtreme parti delle cinte.</s>
            <s xml:id="echoid-s9075" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s9076" xml:space="preserve">Queſta è la terza conditione, che proua, che noi hauemo ſatto bene il Capitello, & </s>
            <s xml:id="echoid-s9077" xml:space="preserve">di ſopra noi l’ hauemo ben dimoſtrata, & </s>
            <s xml:id="echoid-s9078" xml:space="preserve">queſto è un de
              <lb/>
            bei pasſi di Vitr. </s>
            <s xml:id="echoid-s9079" xml:space="preserve">ilqual non ci laſſa deſiderio d’ alcuna coſa, & </s>
            <s xml:id="echoid-s9080" xml:space="preserve">però ſeguitando dice.</s>
            <s xml:id="echoid-s9081" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s9082" xml:space="preserve">Gliasſi delle Volute eſſer non deono piu grosſi della grandezza dell’ occhio, & </s>
            <s xml:id="echoid-s9083" xml:space="preserve">le Volute ſiano tagliate in modo, che le
              <lb/>
            altezze habbiano la duodecima parte della loro larghezza. </s>
            <s xml:id="echoid-s9084" xml:space="preserve">Queſte ſeranno le Simmetrie de i capitelli di quelle Co-
              <lb/>
            lonne, che per la meno ſeranno di piedi quindeci, & </s>
            <s xml:id="echoid-s9085" xml:space="preserve">quelle altre, che ſeranno di piu teneranno allo iſteſſo modo la
              <lb/>
            conuenienza delle lor miſure: </s>
            <s xml:id="echoid-s9086" xml:space="preserve">Il Dado ſera lungo, & </s>
            <s xml:id="echoid-s9087" xml:space="preserve">largo quanto è groſſa la colonna da baſſo, aggiuntoui la nona
              <lb/>
            parte, accioche quanto meno la Colonna piu alta hauerà di raſtremamento non meno di quelle il Capitello habbia
              <lb/>
              <note position="left" xlink:label="note-0107-04" xlink:href="note-0107-04a" xml:space="preserve">40</note>
            lo ſporto della ſua Simmetria, & </s>
            <s xml:id="echoid-s9088" xml:space="preserve">nell’altezza l’ aggiunta della rata parte. </s>
            <s xml:id="echoid-s9089" xml:space="preserve">Ma delle deſcrittioni delle Volute come
              <lb/>
            drittamente à ſeſta ſi uoltino, come s’habbiano à diſſegnare, nel fine del libro la forma, & </s>
            <s xml:id="echoid-s9090" xml:space="preserve">la ragione ci ſarà dipinta
              <lb/>
            e dimoſttata.</s>
            <s xml:id="echoid-s9091" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s9092" xml:space="preserve">Aſſe chiama egli quella parte, che è dalla groſſezza dell’ occhio occupata, come ſe egli fuſſe un bastone, che paſſaſſe per lo mezzo del piumazzo, et
              <lb/>
            ſopra eſſo ſi rauolge, ſi come aſſe è quella linea, che da polo à polo trappaſſando per lo cètro ſi stende. </s>
            <s xml:id="echoid-s9093" xml:space="preserve">Queſte ſono le miſure di que capitelli, che
              <lb/>
            uanno ſopra colonne alte quindeci piedi. </s>
            <s xml:id="echoid-s9094" xml:space="preserve">Ma ſe ſuſſero piu alte ſeranno alli capitelli loro date le isteſſe miſure, ueròè, che il Dado ſera largo,
              <lb/>
            & </s>
            <s xml:id="echoid-s9095" xml:space="preserve">longo di piu della groſſezza della colonna per la nona parte, perche eſſendo la colonna maggiore, meno ſirastrema di ſopra, perche lo ae-
              <lb/>
            re per la lontananza fa lo effetto.</s>
            <s xml:id="echoid-s9096" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s9097" xml:space="preserve">Forniti i capitelli, & </s>
            <s xml:id="echoid-s9098" xml:space="preserve">poi poſti ne i ſommi fuſti delle colonne non à dritto liuello, ma ſegondo egual modulo, accioche
              <lb/>
            quella aggiunta che ne i piedeſtalli ſerà ſtata ſatta riſponda ne i membri di ſopra con la ragioneuole miſura de gli ar
              <lb/>
              <note position="left" xlink:label="note-0107-05" xlink:href="note-0107-05a" xml:space="preserve">50</note>
            chitraui.</s>
            <s xml:id="echoid-s9099" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s9100" xml:space="preserve">Voleua (come hauemo ueduto di ſopra) Vit. </s>
            <s xml:id="echoid-s9101" xml:space="preserve">che i Piedeſtalli uſciſſero oltra il Poggio, ma però che di tutti i membrelli del Piedeſtallo riſpondeſ-
              <lb/>
            ſero i membrelli del poggio che piu adentro ſi ritiraua, ilche conſiderando egli auuertiti cirende, che poniamo i capitelli di modo, che riſpondi
              <lb/>
            no cõ le riſalite loro à quelle giunte da baſſo, accioche nell’architraue corriſpondino i membri con la loro ragioneuole miſura alle parti diſotto
              <lb/>
            come per la ſigura dello impiè del Tempio Pſeudodipteros ſi dimoſtra. </s>
            <s xml:id="echoid-s9102" xml:space="preserve">Egli ſi deue in queſto modo pigliar la ragione de gli archi-
              <lb/>
            traui che ſe le colõone ſerãno almeno da dodici ſin quindici piedi l’altezza dello Architraue ſia per la metà della groſ-
              <lb/>
            ſezzadella colõna da piede. </s>
            <s xml:id="echoid-s9103" xml:space="preserve">Se paſſerà da quindici à uenti partita l’ altezza della colõna in parti tredici per una di eſſe
              <lb/>
            ſerà l’altezza dello Architraue. </s>
            <s xml:id="echoid-s9104" xml:space="preserve">Se piu oltre da uenti à uenticinque uſcirà la colonna, diuidaſi l’altezza ſua in parti do
              <lb/>
            dici, e mezza, & </s>
            <s xml:id="echoid-s9105" xml:space="preserve">diuna parte di quelle ſia ſatto l’Architraue nell’altezza ſua. </s>
            <s xml:id="echoid-s9106" xml:space="preserve">Se ſerà da uenticinque à trenta di dodici
              <lb/>
            parti della colõna una ſia per l’altezza dello Architraue, & </s>
            <s xml:id="echoid-s9107" xml:space="preserve">oltra di queſto ſecõdo la rata parte allo iſteſſo modo dalla
              <lb/>
              <note position="left" xlink:label="note-0107-06" xlink:href="note-0107-06a" xml:space="preserve">60</note>
            altezza delle colonne deono eſſer ſpedite le altezze de gli Architraui, perche quanto piu aſcende l’acutezza della ui
              <lb/>
            ſta non facilmente taglia, & </s>
            <s xml:id="echoid-s9108" xml:space="preserve">rompe la denſità dello aere, & </s>
            <s xml:id="echoid-s9109" xml:space="preserve">però debilitata, & </s>
            <s xml:id="echoid-s9110" xml:space="preserve">conſumata per lo ſpatio dell’altezza,
              <lb/>
            riporta à noſtri ſenſi dubioſamente la grandezza delle miſure, per il che ſempre ne i membri delle Simmetrie aggin-
              <lb/>
            gner ſi deue il ſupplemento della ragione, accioche quando l’opre ſeranno in luoghi alti, ouero haueranno i membri
              <lb/>
            grandi, & </s>
            <s xml:id="echoid-s9111" xml:space="preserve">alti, tutte l’altre parti habbiano la ragione delle grandezze. </s>
            <s xml:id="echoid-s9112" xml:space="preserve">La larghezza dello Architraue dal baſſo in
              <lb/>
            quella parte, che egli ſi poſa ſopra il capitello ſerà tanto quanto la groſſezza di ſopra della colonna, che ſotto giace
              <lb/>
            al capitello, ma la parte di ſopra dello Architraue ſia quanto ſerà la groſſezza del piede della colonna, la gola detta
              <lb/>
            Cimaſa dello Architraue ſia per la ſettima parte della ſua altezza, & </s>
            <s xml:id="echoid-s9113" xml:space="preserve">tanto habbia di ſporto, l’ altra parte oltra la det
              <lb/>
            ta Cimaſa diuider ſi deue in parti dodici, & </s>
            <s xml:id="echoid-s9114" xml:space="preserve">di tre di eſſe facciaſi la prima faſcia, la ſeconda di quattro, & </s>
            <s xml:id="echoid-s9115" xml:space="preserve">la terza diſo
              <lb/>
            pra di cinque, il ſregio ſopra l’ Architraue la quarta parte meno dello Architraue. </s>
            <s xml:id="echoid-s9116" xml:space="preserve">Ma ſe hauerai à ſcolpirgli ſigurette
              <lb/>
              <note position="left" xlink:label="note-0107-07" xlink:href="note-0107-07a" xml:space="preserve">70</note>
            e ſegni, alhora farai il fregio ſia per la quarta parte piu alto dell’Architraue, accioche le ſcolture habbiano del grande.
              <lb/>
            </s>
            <s xml:id="echoid-s9117" xml:space="preserve">La gola ò Cimaſa del ſregio ſia per la ſettima della altezza di eſſo, lo ſporto quanto è la ſua groſſezza. </s>
            <s xml:id="echoid-s9118" xml:space="preserve">Sopra il
              <lb/>
            ſregio deneſi ſare il Dentello tanto alto, quanto è la ſaſcia di mezzo dello Architraue, lo ſporto quanto l’altezza,
              <lb/>
            lo ſpacio, che è tra Dentello, & </s>
            <s xml:id="echoid-s9119" xml:space="preserve">Dentello detto Metochi da Greci, in queſto modo ſi deue diuidere, che il Dentello
              <lb/>
            habbia nella ſronte mezza parte dell’ altezza ſua, il cauo della interſecatione di quella ſronte di tre, due parti
              <lb/>
            habbia della larghezza, la gola di queſto habbia la ſeſta parte dell’ altezza di quello, il gocciolatoio detto </s>
          </p>
        </div>
      </text>
    </echo>