Vitruvius, I Dieci Libri dell' Architettvra di M. Vitrvvio, 1556

Table of figures

< >
[Figure 131]
[132] orizonte eqwnot il poolo
[Figure 133]
[134] A B Il Gnomone diuiſo in noue parti.B T La Linea del piano.E A I L’Orizonte.Q P L’Aſſe del Mondo.B N P Il Meridiano.H G Lacotomus.R C G Monacus, cioè il cerchio de i meſi.N A X F C. Il Raggio Equinottiale.K A T Il Raggio della Bruma.L A R Il Raggio del Solstitio.K O R Il Semidiametro del Solſtitio.L M G Il Semidiametro della Bruma.B T L’ombra Meridiana della Bruma.B C L’ombra Meridiana de l’ Equinottio.B R L’ombra Meridiana del Solſtitio. K e q F u parte della Itate acse o a 9 8 7 6 5 4 3 2 1 b h r mcridi p parte del verno m s lacoto x f g imonaco c linea del. piano t
[135] obelisco gio@ no notte 11 8 ♊ ♋ 14 9 ♉ ♌ 13 10 ♈ ♍ ♓ ♎ ♒ ♏ ♑ ♐ 8 15
[136] b ♋ ♌ ♍ 5 ♎ XI ♏ 6 a ♐ 7 X f 8 IX 9 VIII 10 11 VII d 12 b VI e 1 V 2 IIII 3 III 4 II g ♑ ♋ ♒ 5 ♓ 6 C I ♈ ♉ ♊ l ♋
[Figure 137]
[138] c k a 90 80 o 70 f 60 50 d 45 40 30 20 b 10 9 5 4 c 8 7 6 t 90 80 70 60 l 7 m e 50 l’eguin. 45 40 30 8 7 6 20 4 5 6 7 8 d 9 8 10 9 10 10 9 10 11 11 11 a g f c 12 h 12 i q 1 1 1 2 2 2 3 3 4 e 3 4 5 5 8 7 6 6 4 45 ilpolo k 5 6 n
[139] Hore 8. Min. 34.Hore 12.Hore. 15 Min. 26. l a ♑ ♐ ♒ ♏ g ♓ ♎ h c b ♈ ♍ ♉ ♌ f 60 ♊ ♋ 50 40 30 20 10 k o
[140] ♋ ♌ ♍ ♎ ♏ ♐ 8 7 6 5 4 3 2 1 a e 12 a 11 10 9 8 7 6 5 4 ♊ ♉ ♈ ♓ ♒ ♑
[141] b b a e e d c 12 11 10 4 5 6 7 8 9 ♊ ♈ ♉ ♓ ♒ ♑ ♋ ♌ ♍ ♎ ♏ ♐
[142] ♋ ♌ 7 8 9 10 11 12 ♍ a c ♎ b ♏ ♐ ♑
[143] 11 ♊ ♋ ♌ ♈ orientale ♎ ♓ ♏ ♒ ♑ ♐ ſtilo ♑ ♐ ♏ ſtilo ♎ ♓ occidentale ♍ ♉ ♌ ♉ ♋ ♊ 8 7 6 5 4 3 2 1
[144] 120 110 110 H A R 80 70 60 50 40 30 20 10 B 10 20 30 40 50 60 70 80 I G H 100 110 120 6 10 11 12 13 14 15 16 17 18 19 20 21 22 23 E F D
[145] auiḿ biems 27 22 21 20 @@ 16 17 16 15 14 13 15 3 0 15 3 1 15 3 0 15 3 1 15 3 1 15 2 8 10 20 3 0 10 203 0 10 20 3 0 10 20 3 0 10 20 3 0 10 20 30 uer æſtas 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 15 3 1 15 3 0 15 3 1 15 3 0 15 3 1 15 3 1 10 20 3 0 10 20 3 11 20 20 3 0 10 20 3 0 10 20 3 0 10 20
[Figure 146]
[Figure 147]
[148] A B Vn’ Animal, che portogli un’ Vaſo beue con ſtrepito.F Vna canna torta che uota un’ uaſo.D Vn’ Animal che beue da una conca riuerſcia.B Vn’ Satiriſco, che tiene un’ vdro gonfio. 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 E A F D B
[149] 1 @ 2 3 4 5 6 7 8 9 10 A 11 R 12 1 2 3 4 5 6 7 8 9 10 11 T 12 I H M L F C A D C 0 10 20 30 40 50 60 70 80 90
[150] TAVRO GEMINI GANCER LEO VIRGO LIBRA SCORP SAGIT CAPRKOR @@VAR PIS ARIE TEAPRILE MAZO ZAGNI IVGLIO AGOSI SET OTT NOVE DEC@B GEN @ERRA MZOI II III IIII V VI VIL VIII VIIII X XI XII I II III IIII V VI VII VIII VIIII X XI XII
[151] GIVGNO 30 LVGLTO 31 AGOSTO 31 SETTENIPR 30 OTTOBRE 31 NOVEMBRE 31 DECEMBRE 31 GENARO 31 FEBRARO 28 MARZO 31 APRIZE 30 MAGGIO 31 10 20 30 10 20 30 10 02 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30
[Figure 152]
[153] S S I I D B A E G F L I K
[154] F la Taglia di ſopra, & il luogo doue ella ſi lega.L la Taglia di ſotto detta Artemone, e Paſtecca, et in Greco Epagon.*** il Peſo.A la Leua, che s’appunta in terra, e Lenguella è detto il ſuo capo.3 il Peſo.1 la ſotto Leua detta Hypomochlium, & Preßio in latino.2 la Leua ò Manouella detta Vectis in latino, Mochlion in Greco.V il Marco, in latino detto Equipondium, in Greco Sferoma.Q S Lances.X Lances.R Anſa Examen Lenguella.8 Cuneus Cugno.7 9 Stanga. # 10 Peſo.H G Manico ò Stanga.M Peſo.O N Coclea la Vida.D i Pali.L doue ſi attacca la Pastecca detta Artemo.C Chelonia le orecchie.F la Regola.B Antarij funes le Sartie.E il luogo de i Menali. E F L F L B E C F D D L D D R X X 3 A I 9 7 10 F H C D A 8 H G O N K L M
[Figure 155]
[Figure 156]
[157] A. Acqua in arca æared depreſſa. B. Delfini ærei. C. Modioli ærei. i Moggetti di Rame. D. Le Regole in forma di ſcala. E. Taxilli, taſſelli di tre dita alti.F. Cathene Cymbala tenentes. G. Infundibulum Inuerſum. Tramoggio detto Phigeus. H. Fiſtulæ le Canne per le quali, lo aere dalli Moggetti entra nelTramoggio. I. Vestes, Stanghe. K. Manubria, Manichi, che ogni uolta che ſi preme li Taſti ſi uoltano, & apreno le Nari, che mandano il uento allecanne de l’Organo, che ſuonano. L. Pinne ſub quibus ſub lingulæ omnium organorum.i.i taſti e lenguelle. O. Le Regole tra’l Sommiero detto Pinax, & iregiſtri. P. Pinna depreſſa, un tasto calcato. Q. Tabula, il Sommiero. R. La Figura de i taſtiſeparata perche meglio s’intenda. S. Lingulæ, lenguelle.T. Ceruicu’a, il collo, o la canna. V. L’acqua cacciata in ſu tra. Parca e il Tramoggio dal uento delli Moggetti. X. Pars arcæ, parti dell’ arca.Quell punti nella forma de i Tasti ſeparata ſono, fori del Sommier, che danno il uento alle canne. L P K R E V A T Q X E A V E X H F O B D D C H
[158] IL FINE.DEVSADIVVATVOLENTES
[159] O Cim@ſium.P Af@@agele.2 Apophige.T Catheti.V ij O P Q D F G O P Q A D F C D B C T 1 2 3 4 1 1 2 2 3 3 4 4
[160] C G O P E B F
< >
page |< < (206) of 325 > >|
225206LIBRO quanto e dal g. all’i, & ſia quello ſpacio b. K. & dallo i. al K. ſi tire una linea ſin al toccamento della linea g d. & ſia iui ſegnato l. & perche
per la 33.
del primo di Euclide la linea a b, e paralella alla linea g i b, & per lo preſuppoſto noſtro le linee g i, & b K. ſono eguali, ne ſegue an-
cho, che la linea b g.
ſia paralella alla linea i l. Oltra di queſto delle linee g c, & h e. ſi leuino due parti eguali alla parte i l. & ſiano qutlle g m.
& h n. & ſiano congiunte inſieme i m. & m n. per la allegata propoſitione paralelle ſeranno g l, & m i, & ſimilmente g h, & m n. Tagli an-
cho la linea m n.
la a d nel punto o, & della linea b K. ſia pre ſo tanto quanto è la m @. & ſia quella parte b p, & dal punto o uer ſo il punto p.
ſia tirata una linea, fin che ella tocchi la linea i m.
nel punto q. ſe adunque la linea m ſera eguale alla o q. egli ſtara bene. Ma ſe la m c. ſer a
minore ne ſegue che la b g, ſera ſtata pr eſa, maggiore di quello, che biſognaua, e pero da capo ſi deue tornare, e tanto eſperimentare, che la
parte o q, ſia eguale alla m c.
Sia adunque m c eguale alla o q. ne ſeguir à per la allegata propoſitione 23. del primo, & per lo preſuppoſto
noſtro che la c o, &
la m q. ſiano paralelle, & ſinalmente (come detto hauemo) nella prima dimoſtratione a b. g i. m o d c. ſi chiameràno le pri
me paralelle, &
a g. m i. c o. le ſeconde. Dico adunque che, g i, & m o, ſono le due di mezzo proportionali, tra la a b, & c d. Fac ciaſi adun
1110 que.
che la a d. & la a b. concorrino nel puntor. ne ſeguira quello, che ancho di ſopra detto hauemo per la ſimiglianza de i triangoli ſecondo
la preallegata propoſitione di Euclide, che nelle prime par alelle, che ſi come è proportionata la a r alla r i.
coſi ſera la b r alla r g. & nelle ſe-
conde paralelle quello riſpetto di comparatione che hauera la ar alla r i coſi ſara la g r.
all’a r m. & ſeguitando ancho ſi come nelle prune ſi
hauera la g r.
alla r m. coſi la i r alla r o, & nelle ſeconde ſi come ſi hauera la i r alla r o. coſi la m r. alla r c. Ne ſegue adunque, che la b r.
r g. m r. m c. ſiano in continua proportione, & ſotto la isteſſa ragione per la quarta del ſeſto ſeranno come la a b, alla g i. la g i. alla m o, et la
m o.
alla c d. propoſte adunque due linee dritte a b, & c d. tra quelle trouato ne hauemo due continue proportionali, che ſono ſtate la g i, &
la m o.
ilche fare uoleuamo. Et con ſimili ragioni potremo ritrouarne quante ci ſera in piacere. Et pero per trouarne due di mczzo pro-
portionali la b f.
ſer a un terzo della b o. parche la b g. è alquanto piu del terzo della b c. & non mai minore, ne eguale alla b f. & per ti ouar
ne tre di mezzo proportionali la b f.
ſera un quarto della b c. et la b g. alquãto maggiore della b f. & per trouarne quattro la b f. ſera un qu n
to della b c.
& la b g. ſera alquanto maggiore della b f. cioe un qumio di eſſa b c. & coſi ſempre la b c. ſera partita in una parte di piu di quel,
2220 che ſono le linee mezzane proportionali, che trouar uorremo, &
ſempre lab f. ſer a una di quelle parti, & la b g. alquanto magg ore ſi pren
dera che la b f.
et però la parte b f. ſi piglia, che tante ſiate à punto ſia della b c. accioche la grandezza della b f. ſi poſſa coniettur are piu preſto.
112[Figure 112]a b n e k p b l i q o d f g w c r
Quanto appartiene ad Archita dico la inuentione eſſer difficile, & la dimoſtra
tione molto ſottile in modo, che à porla in opera, non ſi troua instrumen-
to alcuno ſatto ſecondo quella dimostratione.
Noi con quella facilità, che
ſi può dimoſtreremo tal coſa, i ſond onenti dellaquale ſono diſperſi in molte
propoſitioni di Euclide, lequali é neceſſario hauerle per certe perche trop
po ſarebbe il ſcioglier ogni anello de ſi gran catena.
Date ci ſian due linee
a d.
maggiore, l’altra ſia c. Tra queste biſogna trouarne due di mezzo
3330 proportionali.
Prendiamo adunque la maggiore a d. d’intorno laquale ſi
faccia un circolo di modo, che la ne diuenti il diametro di eſſa, &
ſia il det-
to circolo a b d f.
nel qual circolo per la prima delterzo di Euclide ſi fara
una linea eguale alla linea c.
& ſi quella a b. laquale tanto ſi stenda oltra il
circolo, che tocchi il punto p.
ilquale ſia lo eſtremo d’una linea, & tocchi
il circolo nel punto d.
& ſcende fin al punto o, & ſia tutta p d o, & à que
sta ne ſia tratta una egualmente diſtante, che tagli la linea a d.
nel punto e. intendiſi poi una metà di colonna ritonda, che ſemicilindro ſi chia-
ma, dritto ſopra il ſemicircolo a b d.
& oltra di queſto imaguiamoci nel taglio equidistante, che paralellogrammo è, detto del ſemcilindro ſo-
pra a d.
diſſegnato un ſemicircolo ilquale è come un par alellogrammo del ſemicilindro ad anguli giuſti nel piano del circolo A b d f. Queſto ſe
micircolo girato dal punto d nel punto b, stando fermo il punto a, che è termine del Diametro a d.
nel ſuo girare tagliera quella ſoperficie co-
4440 lonnare, ò cilindrica, &
deſcriuera in eſſa una certa linea, dapoi ſe ſtando ſerma la a d. il triangolo a p d gir ando ſi fara un mouimento contra
rio al ſemicircolo ſenza dubbio eg’i deſcriuera una ſoperficie conica della linea dritta a p.
laquale nel girarſi ſi congiugne in qualche punto di
quella linea, che poco auanti ſu deſcritta mediante il mouimento del ſemicircolo nella ſoperficie del cilindro.
Similmente ancho il b. circonſcri-
uera un ſemicircolo nella ſoperficie del cono.
Et finalmenie il ſemicircolo a d e. habbia il ſuo ſito dapoi che ſera moſſo la doue le linee caden-
do concorrono, &
il triangolo che al contrario ſi moua, habbia queſto ſito d l a. & il punto doue concadono ſia K. ſia ancho per b. deſcritto
un ſemicircolo b m f.
& la doue ſi taglia col circolo b d f a. ſia b f. indi da punto K. à quel piano, che è del ſemicircolo b d a. cada una perpen-
dicolare, certo è che cadera nella cir conferenza del circolo, perche nel piano dello iſteßo circolo fu drizzato il cilindro.
Cada adnnque,
&
ſia K i & quella linea, che uiene dallo i. nello a congiunta ſia con b f. nel punto h. Ma perche luno, & l’altro ſimicircolo cioe il d a, & il
b m f.
è drizzato ſopra il ſottopoſto piano del circolo a b d f. & pero il lor taglio commune m h. sta con anguli giuſti ſopra il piano del circo
lo a b d f.
perilche ancho ſopra eſſa b f. è drizzata la m h. A dunque cio che è contenuto ſotto la b h f. & lo h f. & ſotto lo h a, & lo h i ſi tro-
5550 ua eguale à quello che è ſotto la h m.
Adunque lo angulo a m i, è giuſto, per la conuerſione del corolario della ottaua del ſesto. & il triangolo
a m i, ſi troua ſimile all’uno, &
all’altro de i due trianguli m a h. & a K d. & perche lo angulo d K a. è giusto per la trenteſima del trenteſimo.
113[Figure 113]c p l k b m i o b a e d f o A dunque per la uinteſimanona del primo d K m, ſono egualmente distanti, impe-
roche per le coſe dimoſtrate h i m h.
ſono perpendicolari al piano del circolo a b d
f.
A dunque egli è proportionale, che come ſi ha d a. ad a K coſi ſi habbia K a. ad a i.
& i a ad a m. percioche i triangoli d a K. K a i. i m a. ſono ſimili per la quarta del
ſeſto, &
coſi ſeguita che quattro dritte linee d a. a K. a i. a m ſiano continue propor
tionali, ma la a m.
ſi troua eguale alla c, & per la commune ſententia, quelle coſe
che ſono eguale ad una, ſono tra ſe eguali, perche la a m ſi troua eguale alla a b.

A dunque proposte due linee ad.
c. ne hauemo trouate due di mezzo proportiona-
6660 li, che ſono a K.
a i. come doueuamo fare. Platone ſimilmente ne fece, & la dimo
ſtratione, &
lo inſlrumento, come qui ſotto poneremo. Lega le due dritte linee,
tra lequali uuoi trouarne due proportionali, legale dico in un angulo dritto nel purt
to b.
& ſia la maggiore b g. & la minore e b. allonga poi l’una, & l’altra fuori del
l’angulo b.
la maggiore uerſo il d. & la minore uerſo il c, & fa due anguli dritti
trouando il punto c, &
il punto d. nelle loro linee conueniente, & ſia l’uno angulo
g c d.
& l’altro c d e. ſi dico, che tra le due linee dritte e b. & b g. proportionato ha
uerai due altre linee, che ſono b d.
& b c. perche preſuppoſto hauemo lo angulo e d
c.
eſſer dritto, & la e d. eſſer par alella alla c g. pero ne ſegue per la 29 del primo,
che lo angulo g c d.
ſia giuſto, & eguale allo angulo c d e. ilquale ſimilmente eſſer
7770 giuſto preſupponemo, ma la d b per lo nostro componimento cade porpendicolare
ſopra la g b d.
adunqae per lo corolario della ottaua del ſesto la b d. è quella linea
proportionata, che cade tra la e b, &
la b c. & ſunilmente la linea b c, è la mezza
na proportionale tra la b d.
& la b g. poſta adunque la ragione, & la proportione
commune della linea b d alla linea b c.
ne ſeguita che la e b h iuera quello r ſpet o di
comparatione alla linea b d.
che hauer a la c b. alla linea b c. percioche l’una, et

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index