Vitruvius, I Dieci Libri dell' Architettvra di M. Vitrvvio, 1556

Table of handwritten notes

< >
< >
page |< < (215) of 325 > >|
234215NONO. sto del Sole. Allhora adunque haueremo conoſciuto il numero delle riuolutioni dello Epiciclo, quando ſara maniſeſto lo ſpacio d’una rìuolutio
ne
, auuegna che non coſi ſottilmente, ne per queſto ancho ci puo ſtar aſcoſo il numero de i meſi Lunari, ogni fiata, che hauer potremo il numero
della
uolta, &
della piena della Luna, & per lo ſpacio del tempo tra una Eclipſe & l’altra partito nel numero de i meſi Lunari, ci dar à la quă
tità
di eſſo meſe Lunare.
& perche nel detto meſe la Luna compie una riuolutione della longhezza, et ui aggiugne tanto di ſpacio quan-
to
in quello ſteſſo meſe il Sole ſi moue, però tutto quel circolo intiero con il detto mouimento del Sole partito nel numero de i giorni del meſe
Lunare
con i ſuoirotti ci darà ad intendere, quanto ſia il mouimento diurno della Luna.
Oueramente per ſaper lo isteſſo mouimento diurno
della
Luna ſi puo al numero delle riuolutioni fatte dalla Luna nel detto ſpatio di due Eclipſi aggiugnere il mouimento del Sole fatto nel detto
ſpacio
, et raccogliere tutto il mouimento della Luna fatto in quello ſpacio, &
partirlo nel numero de i giorni di quello ſpacio, & di piu lo intie-
ro
circolo partito nel numero de igiorni Lunari, et de i rotti, et ſimilmĕte il numero de i gradi delle riuolutioni del predetto ſpacio, partito nel
numero
de i giorni dello iſteſſo ſpacio ci fa manifeſto quanto per ogni giorno la Luna ſi diparta dal Sole, che tanto uuol dire, quanto il mouimĕ
1110 to d’un giorno della Luna, &
di piu del mouimento del Sole. Non altrimenti il numero delle riuolutioni della Luna nello Epiciclo conuertito in
gradi
, &
partito nel numero de i gradi dello interuallo ci farà conoſccer quanto ſi moue la Luna ogni di nello Epiciclo. In queſto modo ſi com
prende
il mouimento della lŏghezza ogni eſſer digradi 13 minuti 10.
ſeconde 35. Et il mouimento dello Epiciclo eſſer gradi 13 minuti 3. ſecŏ
de
54.
Longo ſarebbe à capitulare tutto quello, che nella ſpeculatione della Luna ſi può dire, peròriportandoſi à gli ſcrittori, che di queſto co-
pioſamente
, &
bene hanno ſcritto, paſſeremo à gli altri pianeti à i due ſottopoſti al Sole, cioè à Mercurio, & à Venere. Dico, che gli Aſtrono
mi
hanno auuertito queſti due pianeti partirſi dal Sole, &
allontanarſi fino à certi termini dall’una parte, & dall’altra, & nel mezzo del loro
andare
uerſo il Sole, &
del loro ritorno congiugnerſi con il Sole, ma quando erano dalle bande del Sole nelle loro ſtationi trouarſi diſcostißi-
mi
dal Sole, &
però conchiuſero, che ſimil progreſſo, et regreſſo, ſi doueua ſaluare con l’Epiciclo, di modo, che lo cĕtro dello Epiciclo col Sole à
torno
ſi moueſſe, &
che l’uno, & l’altro pianeta tanto dal Sole s’allontanaſſe, quanto daua loro la longhezza dello Epiciclo, ma perche racco-
gliendo
inſieme due contrarie, et grandißime distanze de i detti pianeti dal Sole, trouarono come in ogni luogo ſi ſeruaua la iſteſſa quantita,
2220&
che quella ſomma non poteua creſcere, ſe non per lo accoſtamento dello Epiciclo, ne ſcemare ſe non per lo apartamento di eſſo Epiciclo,
per
loquale lo Epiciclo hora ſi accoſtaſſe hora ſi allontanaſſe dal centro del mondo, però à i due pianeti inferiori, &
lo Eccentrico, & lo
Epiciclo
ſono ſtati conceßi, con queſta conditione, che lo Eccentrico ſempre portaſſe à torno lo Epiciclo col Sole, &
quello iſteſſo fuſſe
mezzano
mouimento del Sole &
del pianeta, & lo Epiciclo portaſſe il pianeta di quà, & di làrimouendo dal Sole, & molto bene quadraſ-
fe
, per ſaluare i regreßi, &
i mouimenti delle larghezze. Hora per ſapere in che modo ſi habbia la quantita del mouimento. Io dico che
oſſeruar
biſogna il luogo del pianeta in nel punto del Zodiaco, &
aſpettar tanto, che di nouo il pianeta ritorni allo ſteſſo luogo,
con
questa conditione, che egli ſia in egual diſtanza dal luogo di mezzo del Sole nell’uno, &
l’altro luogo, percioche allhora il piane-
ta
hauerà fornito le intiere riuolutioni dell’uno, &
l’altro mouimento prima nello Eccentrico, perche il punto dello Epiciclo, ſerà ri-
tornato
allo ſteſſo punto, poi nello Epiciclo, perche il pianeta alla diſtanza iſteſſa del Sole tornato, hauerà ancho ritrouato lo iſteſſo pun-
to
dell’Epiciclo.
Per queſte oſſeruationi ſi hauer à il tempo traſcorſo, et il numero delle riuolutioni, imperoche ne i tre pianeti di ſopra quan-
3330 te ſaranno ſtate le riuolutioni dello Epiciclo, &
le riuolutioni dello Eccentrico, ponendo inſieme il numero di queſte, et di quelle, tanto nello ſteſ
ſo
ſeranno ſtate le riuolutioni del Sole, ma ne i due inferiori il numerro delle riuolutioni dello Eccentrico, è lo steſſo col numero delle riuolutio
ni
dello Epiciclo conoſciuto che ſarà da noi appreſſo al uero il tempo d’una riuolutione.
La onde il numero delle riuolutioni moltiplicato per
360
produr à gradi, &
il numero de i gradi partito per lo numero de i giorni dello ſpacio delle oſſeruationi fatte ci darà la quantità del moui-
mento
diurno.
Ma che ordine ne i progreßi, & ne i ritorni & quale neceßità loro ſia, dirò breuemente prima auuertendo, che la diuerſità ò
contrarietà
di questa apparenza conuno di due modi ſi può ſaluare, ò che di dia al pianeta ſolo il deferente Eccĕtrico, ouero lo Epiciclo col de-
ferente
Concentrico, cioè à quello modo, che in ciaſcuno de i tre pianeti di ſopra raccolti inſieme i mouimenti dello Epiciclo nel Concentrico, et
del
pianeta nello Epiciclo ſieno eguali al mezzano mouimento del Sole, ma il centro dello Eccĕtrico ſecondo l’ordine de i ſegni ſi moua inſieme
col
Sole, &
il pianeta con quella uelocita ſi moua con laquale ſi moue l’Epiciclo nel Concentrico in modo, che quella linea, che uiene dal Centro
ch’è
paralella alla linea, che dal Centro dello Eccentrico, al Centro del pianeta è tirata, termini il mezzano mouimento del pianeta, &
questo
4440 ne i tre ſoperiori ſi oſſerua, ma ne i due inferiori pongaſi il mouimento dello Epiciclo nel Concentrico, eguale al mezzano mouimento del Sole,
ma
il mouimento del pianeta nello Epiciclo, &
il mouimento del Centtro dello Eccentrico ſia eguale alla ſomma raccolta dal mezzano mouimĕ
to
del Sole, &
da quel mouimento, che fa il pianeta nello Epiciclo, & il pianeta ſimilmente con la isteſſa uelocità ſi moua, con laquale ſi moue lo
Epiciclo
nel Concentrico, con la iſteſſa conditione detta di ſopra, cioè in modo che quella linea, che uiene dal Cĕtro, che è paralella alla linea, che
dal
Centro dello Eccentrico al centro del pianeta, è tirata, termini il mezzano mouimento del pianeta, &
ancho aggiuntaui queſta conditione
in
quanto à tutti, che i diametri dello Eccentrico, &
del Concentrico ſiano proportionati al Semidiametro dello Epiciclo, & all’uſcita del Cen
tro
, &
coſi all’uno, & all’altro modo nelle Stelle erranti ſi potria difendere la ragione del progreſſo, & del regreſſo quanto alla diuerſità, &
uarietà
come per longa eſperienza compreſo hanno gli oſſeruatori delle Stelle, però ſu neceſſario dare la prima diuerſità allo Epiciclo, &
di-
fendere
la ſeconda col deferente, ma quella ſola coſa era aſſai basteuole à far, che i deferenti di tutti i pianeti non faceſſero uno isteſſo Centro,
cioè
la ſingularità del mouimento, cioè la ſuperiore, alla inferiore, &
perche questa communicatione non è stata auuertita ne i propi mouincn
5550 ti de i pianeti, però non ci fu ordine di dar loro i Concentrici, ma accioche egli ſe intenda
bene
à quale de i pianeti ſi dia il progreſſo, &
il regreſſo; dirò, che imaginare douemo
due
dritte linee, dal Centro tirate l’una che termine nelle parti Orientali dello Epiciclo,
l’altra
nella parte Occidentale, à queſto modo quanto al mouimento del pianeta nello Epi
124[Figure 124]h. k. l’Epiciclo’.
b
. il ſuo Centro.
h
.il ſuo giogo.
n
. l’@ ppoſto al giogo.
c
il Centro del Mondo.
K
. il punto della prima
dimora
.
@
il punto della ſecon-
da
.
h
K o l’arco della ſe-
conda
.
K
. n. o l’arco del Re-
greſſo
h
K l’arco della Di@
rettione
.
H L A B K N O C
ciclo, la Stella, che ander à per l’arco di ſopra nello Epiciclo, dico di ſopra alle due punti
del
toccamento delle dette linee, ſi dirà andar inanzi, et far progreſſo, perche ella uer
ſo
l’Oriente, ma nello arco inferiore ſi dirà retrograda, perche ritornerà mouendoſi à-
la
contraria parte, ma ſtando ne i punti predetti, ſi dirà, che ella dimor, ò stia, perche
nel
punto Orientale ſi farà rettrograda di dritta, &
nel punto Occidentale ſi farà drit-
ta
di retrograda, benche nel Sole, &
nella Luna queſte coſe per lo contrario conſiderate
6660 ſono, laqual ragione d’intorno al progreſſo, &
al regreſſo ſaria à baſtanza, ſe egli auue
niſſe
, che il pianeta non ſi trouaſſe con altro mouimento, che col mouimento dello Epici-
clo
, ma perche mentre il pianeta nello Epiciclo ſi riuolge lo Epiciclo ancho dello Eccĕtri
co
è portato, però che appreſſo i punti detti del toccamento il pianeta benche quanto al
riuolgimento
dello Epiciclo ſia in dimora, niente di meno dallo Eccentrico è portato uer-
ſo
l’Oriente, &
coſi anchora è diretto, & però è neceſſario, che i punti delle dimore ſia-
no
alquanto inferiori à quelli punti, che nel toccamento fanno le predette linee;
che dal
Centro
hauemo detto partirſi, &
coſi quelle linee non toccando, ma tagliando, & parten
do
lo Epiciclo, fanno ne i tagli i punti della dimora, &
peròè neceſſario, che quei punti
ſiano
in quella parte della circŏferenza dello Epiciclo, doue il mouimento retrogrado del
pianeta
dello Epiciclo coſi contraſta col mouimĕto del deferĕte, che quãto il pianeta, è por
7770 tato all’occaſo dallo Epiciclo tanto l’ Epiciclo ſia ritornato dal deferente uerſo Leuante, &
à questo modo il pianeta dieguali ma contrari mo
uimenti
portato pare, che egli dimori, &
ſi ſtia. Et però il pianeta nel punto dello ſtato Orientale, che è detto prima dimora comincia à
ritornare
:
imperoche iui il mouimento del pianeta nello Epiciclo comincia à ſuperare il mouimento dello Epiciclo nel deferente, ma nel pun-
to
della dimora Occidentale, che ſi chiama ſeconda ſtatione il pianeta ritorna allo andar auanti, &
al progreſſo, percioche ſi rallenta nello Epi
c
iclo il mouimento del pianeta, &
queste coſe da gli eſſempi ſoprapoſti ci ſono manifeste.

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index