Vitruvius, I Dieci Libri dell' Architettvra di M. Vitrvvio, 1556

Table of contents

< >
[11.] L’INDICE DEL PRIMO LIBR O DELLE FORTIFICATIONI DEL SIGNOR GIANIACOPO LEONARDI CONTE DE MONTELABATE.
[12.] IL FINE DEL PRIMO LIBRO.
[13.] DELLA ARCHITETTVRA DI M, VITRVVIO.
[14.] PROEMIO.
[15.] CAP. I. DELLA VITA DE GLI HVOMINI ANTICHI, ET DE I PRINCIPII DEL VIVER HVMANO, ET DELLE CASE ET ACCRESCIMENTO DI QVELLE.
[16.] CAP. II. DE I PRINCIPII DELLE COSE SECONDO I FILOSOFI.
[17.] CAP. III. DE I MATTONI.
[18.] CAP. IIII. DELLA ARENA.
[19.] CAP. V. DELLA CALCE, ET DEL MODO D’IMPASTARLA.
[20.] CAP. VI. DELLA POLVE POZZOLANA.
[21.] CAP. VII. DEI LVOGHI DOVE SI TAGLIANO LE PIETRE.
[22.] CAP. VIII. DELLE MANIERE DEL MVRARE, E QVALITA SVE. Le parti di poner inſieme le Pietre ſon queſte.
[23.] CAP. IX. DEL TAGLIARE I LEGNAMI.
[24.] CAP. X. DELLO ABETE DETTO SOPERNATE, ET INFERNATE, CON LA DESCRITTIONE DELL’APENNINO.
[25.] IL FINE DEL SECONDO LIBRO.
[26.] LIBRO TERZO DELLA ARCHITETTVRA DI M. VITRVVIO.
[27.] PROEMIO.
[28.] CAP. I. CHE LA RAGIONE DELLE MISVRE E STATA DA GLI ANTICHI PIGLIATA DALLE MISV-RE DEL CORPO HVMANO.
[29.] QVESTA E LA PIANTA DEL TEMPIO DETTO FACCIA IN PILASTRI DETTA IN ANTIS.
[30.] QVESTA E L A META’ DELLA’ PIANTA DELLO ALLATO DOPPIO, DETTO DIPTEROS, LAQVAL E’ NEL PRIMO LIBRO, ET LEV ANDOGLI L’ORDINE DI DENTRO DELLE COLONNE SERVIRA’ IN QVESTO LVOGO PER IL FALSOALLATO DETTO PSEVDODIPTEROS.
[31.] CAP. II. DI CINQVE SPECIE DI TEMPI.
[32.] LA META’ DELLA PIANTA DELL’ASPETTO DEL TEMPIO SCOPERTO DETTO HYPETROS.
[33.] CAP. III. DEL FONDARE, ET DELLE COLONNE, ET DEL LORO ORNAMENTO, ET DE GLI ARCHITRAVI.
[34.] IL FINE DEL TERZO LIBRO.
[35.] LIBRO QVARTO DELLA ARCHITETTVRA DI M. VITRVVIO.
[36.] PROEMIO.
[37.] CAP. I. DI TRE MANIERE DI COLONNE, ET DELLE ORIGINI ET INVENTION LORO.
[38.] CAP. II. DE GLIORNAMENTI. DELLE COLONNE.
[39.] CAP. III. DELLA RAGIONE DORICA.
[40.] CAP. IIII. DELLA DISTRIBVTIONE DI DENTRO DELLE CELLE ET DELL’ANTITEMPIO.
< >
page |< < (58) of 325 > >|
6658LIBRO due. Se contenera il terzo oltra il tutto, ſer à la proportione ſeſquiterza nominata. come quattro à tre, otto à ſei. Se un quarto la ſesqui-
quarta, come dieci à otto.
& coſi in infinito.
Ma ſe uorremo ſapere le ſpecie della ſoprapartiente, diremo in questo modo. che il piu contiene il meno una uolta è due parti d’eſſo, ouero
tre, ò quattro, &
coſi in infinito. Se contenera di piu del meno due parti, dirasſi ſoprabipartiente. come cinque, à tre, che è un tanto,
&
due terzi, ſe tre parti chiamerasſi ſopratripartiente, come otto à cinque, che è un tanto, è tre quinti. ſe quattro parti, chia merasſi
ſopra quadripartiente, come noue à cinque, che è un tanto ė quattro quinti.
& coſi nel reſtante, & queſte ſono le ſpecie della ſemplice
proportione, della maggior diſaguaglianza.
Le compoſte ueramente ſono due, et chiamanſi cõposte, perche fatte ſono da due ſemplici, la prima è detta moltiplice ſopraparticolare. la ſeconda
moltiplice ſoprapartiente, &
ſono coſi dette, perche rittengono la natura di quelle proportioni delle quali compoſte ſono, inquanto adunque
la prima è detta moltiplice, ne ſegue, che il maggiore contegna il minore piu uolte, ma inquanto é detta ſopraparticolare, ne ſegue, che il mag-
1110 giore contenera il minore piu uolte con qualche parte di eſſo.
& però la moltiplice ſopraparticolare comparando il piu al meno, ritroua, che
il piu contiene il meno piu uolte, &
qualche parte di eſſo, ſe due ſiate & la metà ſer à proportione dupla ſeſquialtera, come cinque à due ſe
tre fiate, &
la meta ſerà tripla ſeſquialtera, & coſi in infinito. Se due ſiate & un terzo come ſette à tre ſer à doppia ſeſquiterza. Se tre
fiate, &
unterzo, ſer à tripla ſesquiterza, & coſi procedendo nell’ altre ſi può andare in infinito. Parimente la moltiplice ſoprapartiente
proportione inquanto moltiplice il piu contenera il meno piu uolte, &
inquanto ſoprapartiente il piu contenera del meno alquante parti, &
ſe il piu contenera il meno due fiate, &
due parti ſer à doppia ſopr abipartiente, come dodici à cinque, ſe due fiate è tre parti, ſer à doppia ſo-
pratripartiente, come tredici à cinque, &
coſi in infinito, come ſe il piu conteneſſe il meno tre fiate, & due parti ſarebbe tripla ſoprabi-
partiente, come dieciſette à cinque.
Se tre fiate, & tre parti, ſarebbe tripla ſopratripartiente come dieciotto à cinque. & coſi ſeguendo
nell’altre.
Et perche per un riſpetto ſi conoſce l’altro, però dalle ſpecie delle proportioni della diſaguaglianza del maggiore al minore, ſe hanno le ſpecie
della diſaguaglianza del minore al maggiore, ne altra differenza é, che ſi come nella prima ſi cominciaua dal piu &
ſi terminaua nel meno,
2220 coſi in queſta s’ineomincia dal meno, &
ſi termina nel piu. & ſi muta quella particola ſopra, nella particola ſotto, & però ſi dice ſottomol
tiplice, ſottodoppia, ſotto ſesquialtera, ſottoſesquiterza, &
il reſto ad uno iſteſſo modo.
Deuesſi auuertire, che à due modi una quantità ė parte d’unaltra. Il primo ė quando la parte d’una quantità preſa ſecondo alcune fiate apunto,
entra nel tutto di punto.
cio è quando il partitore entra apunto nella coſa partita, & niente gli auanza. queſta noi chiamaremo parte molti-
plicante, &
questa è la uera ſignificatione, & propia intelligenza di questo nome, che parte ſi chiama.
Diceſi in altro modo parte quella, che preſa quante fiate uuoi, mai non ti rende l’intiero, & ſi chiama parte aggiunta, imperoehe aggiunta con
un’ altra parte fa il tutto, l’eſſempio della parte moltiplicante, è come due à ſei, imperoche due miſura ſei, &
in eſſo entra tante fiate apun-
to, come tre in noue, otto in trentadue.
l’eſſempio della parte aggiunta è come due nel cinque, perche due preſo due fiate non fa cinque, ma
meno.
& preſo tre non ſa cinque ma piu.
Quando adunque s’è detto che nella proportione ſemplice ſopra particolare il piu contiene il meno una fiata, & ancho qualche parte del meno
3330 intendeſi, che quella tal parte ſia parte moltiplicante, ſimilmente quando s’ė detto, che nella proportione ſoprapartiente il piu contiene il
meno una fiata, &
di piu alquante parte di eſſo, s’intende delle parti aggiunte, compoſte però di parti moltiplicanti, come cinque contiene
tre, &
due parti del tre, lequali preſi quante fiate uuoi non fanno tre. perche due preſo una fiata, non fa tre, preſo due fiate paſſa tre. &
però due è parte aggiunta di tre, laqual parte però è fatta di parti, &
che preſe alquante fiate fan due, perche due è fatto di due unità. il ſi-
mile intender ai nelle compoſte proportioni, perche ſerbano la natura delle componenti, &
tanto ſia detto della ſignificatione. è ancho della
diffinitione, &
diuiſione delle proportioni. Hora ſi dir à cio, che ne naſce. Dalle proportioni naſcono le comparationi, & i riſpetti che han-
no tra ſe, cio ė quando una proportione ė comparata con l’altra, &
queſte ſimiglianze di proportioni ſi chiamano proportionalità, & ſi
come la proportione è riſpetto, &
conuenienza di due quantità compreſe come due estremi ſotto un’iſteſſo genere, coſi la proportionalità
ė riſpetto, ė comparatione non d’una quantità all’altra, ma d’una proportione all’altra, come ſarebbe à dire la proportione che ė fra quat-
tro ė dua, eſſer ſimile alla proportione, che fra otto, &
quattro, imperoche & l’una, & laltra ė doppia. & però tutte le doppie, tutte le
4440 triple, ò quadruple, ò ſiano d’ uno isteſſo genere come tralinea, &
linea, tra corpo & corpo. ò ſiano di diuerſi generi, come è tra linea, &
corpo, &
tra corpo é ſpatio. tra ſpatio & tempo ſono proportionali, & conſequentemente ſimili, & doue ė proportionalità iui ė neceſſa-
rio che ſia proportione, imperoche proportionalità non è altro che conueneuolezza di proportione.
ma non per lo contrario, perche fra
quattro &
dua ė proportione, ma non proportionalità. in queste proportionalità conſisteno tutti i ſecreti dell’ arte. ma perche bene s’intenda
quanto ſcoprir uolemo, ſi dira prima.
come ſi conoſcono i denominatori delle proportioni. come ſi aggiugne, come ſi leua dalle proportio-
ni, come ſono moltiplicate, &
partite. & poi ſi dira delle proportionnalità, è de i termini ſuoi coſe, che in quantità poche ſeranno ma in
uirtu tali, &
tante che ogni ſtudioſo d’ogni facultà ſe ne potra ſeruire.
Per ſapere adunque ritrouare i denominatori delle proportioni, ilche gioua, à conoſcere qual proportione ſia maggiore, qual minore, perche nelle
fabriche quelle hanno piu del grande, che ſono di maggior proportione, è da conſiderare, che quando la proportione è di aggudgliamza, cioė
quando ſono tante unit à in un numero, quante in un’altro, non è neceſſario affaticarſi in ritrouar i denominatori, perche (come ho detto)
5550 non ſi trouano piu ſpecie di quella, perehe tra le coſe pari non è maggioranza, ne minoranza.
Ma doue è proportione di diſaguaglianza,
bene è neceſſario il ſaperli, per poter conoſcer la diuerſità delle ſpecie loro.
Breue adunque, & iſpedita regola di ritrouar i numeri da i quali chiamate, & nominate ſono le proportioni, ė partire l’uno eſtremo della pro-
portione per altro.
imperoche quello che ne adiuiene per tal partimento, e ſempre il denominatore, cio è il numero dalqual e denominata la
proportione.
Partire altro non ė che uedere quante fiate un numero entra nell´altro, & quello, che gli auanza. La onde è raggioneuole che
dal partimento, &
dall’ auuenimento ſi conoſca il nome di ciaſcuna proportione.
Se adunque ſi uuol ſapere come ſi chiama la proportione che è tra quattro & otto, partir conuienſi otto per quattro, cio ė uedere quante fiate
quattro entra in otto.
& ritrouerai che quattro entra in otto due fiate apunto. da due adunque chiamerai, & denominarai la proportione,
che e tra quattro, &
otto. & dirai la proportione eſſer doppia.
Eccone un’altro eſſempio ſe deſideri ſapere, che proportione ſia tra cinque e ſedici, parti ſedici per cinque, & ritrouerai chel cinque entra nel
6660 ſedici tre fiate.
& però dirai che ė proportion tripla, & perche gli auanza uno che è la quinta parte di cinque. però dirai che ė proportion
tripla ſesquiquinta.
& conoſcer ai queſta proportione eſſer compoſta, cio e moltiplice ſopraparticolare, & coſi nel reſtante ti eſſerciterai.
Dalla ſopradetta cognitione ſi può ſapere quale proportione ſia da eſſer poſta tra le maggiori, & quale tra le minori, & quale tra l’eguali &
ſimili proportioni.
imperoche eguali e ſimili ſono quelle, che hanno le iſteſſe denominationi. ma ſono maggiori quelle, che hanno denomination
maggiore, &
minori quelle che l’hanno minore, perche la denominatione e detta tanto eſſer grande, quanto il numero, che la dinota. &
però la quadrupla e maggiore della tripla, perche di quella il numero, che la dinota e quattro, di queſta, tre.
& coſi la ſesquialtera e mag-
giore della ſesquiterza, perche la ſesquialtera e nommata dalla meta, &
la ſesquiterza da un terzo, & ne i rotti quanto e maggiore il de-
nominatore del rotto, tanto e minore il rotto, &
quanto e minore il denominatore, tanto e maggiore il rotto, & peròun quarto e meno d’un
terzo, perche quattro e maggiore di tre.
& però una tripla ſesquialtera e maggiore, che una tripla ſesquiterza. ma una tripla ſesquiterza
e maggiore che una doppia ſesquialtera.
& queſto non per la denominatione del rotto, ma per ragione del numero intiero.
7770
Non è facile a dichiarire la utilità che ne uiene all’ Architetto della cognitione delle ſopra dette coſe, imperoche infinite ſono le occorrenze
di ſeruirſi piu d’una, che d’un´ altra proportione, come nella diuiſione de i corpi delle fabriche, ne gli Atrij, Tablini, Sale, Loggie, &
al-
tre ſtanze.
Nelle ſoprapartienti proportioni ſimilmente quella è maggiore, che da numero maggiore è denominata, & perche queſto s’intendi bene, io dico.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index