Vitruvius, I Dieci Libri dell' Architettvra di M. Vitrvvio, 1556

List of thumbnails

< >
121
121 (106)
122
122 (107)
123
123 (108)
124
124 (109)
125
125 (110)
126
126 (111)
127
127 (112)
128
128 (113)
129
129 (114)
130
130 (115)
< >
page |< < (215) of 325 > >|
    <echo version="1.0RC">
      <text xml:lang="it" type="free">
        <div xml:id="echoid-div634" type="section" level="1" n="112">
          <p style="it">
            <s xml:id="echoid-s18813" xml:space="preserve">
              <pb o="215" file="0225" n="234" rhead="NONO."/>
            sto del Sole. </s>
            <s xml:id="echoid-s18814" xml:space="preserve">Allhora adunque haueremo conoſciuto il numero delle riuolutioni dello Epiciclo, quando cí ſara maniſeſto lo ſpacio d’una rìuolutio
              <lb/>
            ne, auuegna che non coſi ſottilmente, ne per queſto ancho ci puo ſtar aſcoſo il numero de i meſi Lunari, ogni fiata, che hauer potremo il numero
              <lb/>
            della uolta, & </s>
            <s xml:id="echoid-s18815" xml:space="preserve">della piena della Luna, & </s>
            <s xml:id="echoid-s18816" xml:space="preserve">per lo ſpacio del tempo tra una Eclipſe & </s>
            <s xml:id="echoid-s18817" xml:space="preserve">l’altra partito nel numero de i meſi Lunari, ci dar à la quă
              <lb/>
            tità di eſſo meſe Lunare. </s>
            <s xml:id="echoid-s18818" xml:space="preserve">& </s>
            <s xml:id="echoid-s18819" xml:space="preserve">perche nel detto meſe la Luna compie una riuolutione della longhezza, et ui aggiugne tanto di ſpacio quan-
              <lb/>
            to in quello ſteſſo meſe il Sole ſi moue, però tutto quel circolo intiero con il detto mouimento del Sole partito nel numero de i giorni del meſe
              <lb/>
            Lunare con i ſuoirotti ci darà ad intendere, quanto ſia il mouimento diurno della Luna. </s>
            <s xml:id="echoid-s18820" xml:space="preserve">Oueramente per ſaper lo isteſſo mouimento diurno
              <lb/>
            della Luna ſi puo al numero delle riuolutioni fatte dalla Luna nel detto ſpatio di due Eclipſi aggiugnere il mouimento del Sole fatto nel detto
              <lb/>
            ſpacio, et raccogliere tutto il mouimento della Luna fatto in quello ſpacio, & </s>
            <s xml:id="echoid-s18821" xml:space="preserve">partirlo nel numero de i giorni di quello ſpacio, & </s>
            <s xml:id="echoid-s18822" xml:space="preserve">di piu lo intie-
              <lb/>
            ro circolo partito nel numero de igiorni Lunari, et de i rotti, et ſimilmĕte il numero de i gradi delle riuolutioni del predetto ſpacio, partito nel
              <lb/>
            numero de i giorni dello iſteſſo ſpacio ci fa manifeſto quanto per ogni giorno la Luna ſi diparta dal Sole, che tanto uuol dire, quanto il mouimĕ
              <lb/>
              <note position="left" xlink:label="note-0225-01" xlink:href="note-0225-01a" xml:space="preserve">10</note>
            to d’un giorno della Luna, & </s>
            <s xml:id="echoid-s18823" xml:space="preserve">di piu del mouimento del Sole. </s>
            <s xml:id="echoid-s18824" xml:space="preserve">Non altrimenti il numero delle riuolutioni della Luna nello Epiciclo conuertito in
              <lb/>
            gradi, & </s>
            <s xml:id="echoid-s18825" xml:space="preserve">partito nel numero de i gradi dello interuallo ci farà conoſccer quanto ſi moue la Luna ogni di nello Epiciclo. </s>
            <s xml:id="echoid-s18826" xml:space="preserve">In queſto modo ſi com
              <lb/>
            prende il mouimento della lŏghezza ogni dì eſſer digradi 13 minuti 10. </s>
            <s xml:id="echoid-s18827" xml:space="preserve">ſeconde 35. </s>
            <s xml:id="echoid-s18828" xml:space="preserve">Et il mouimento dello Epiciclo eſſer gradi 13 minuti 3. </s>
            <s xml:id="echoid-s18829" xml:space="preserve">ſecŏ
              <lb/>
            de 54. </s>
            <s xml:id="echoid-s18830" xml:space="preserve">Longo ſarebbe à capitulare tutto quello, che nella ſpeculatione della Luna ſi può dire, peròriportandoſi à gli ſcrittori, che di queſto co-
              <lb/>
            pioſamente, & </s>
            <s xml:id="echoid-s18831" xml:space="preserve">bene hanno ſcritto, paſſeremo à gli altri pianeti à i due ſottopoſti al Sole, cioè à Mercurio, & </s>
            <s xml:id="echoid-s18832" xml:space="preserve">à Venere. </s>
            <s xml:id="echoid-s18833" xml:space="preserve">Dico, che gli Aſtrono
              <lb/>
            mi hanno auuertito queſti due pianeti partirſi dal Sole, & </s>
            <s xml:id="echoid-s18834" xml:space="preserve">allontanarſi fino à certi termini dall’una parte, & </s>
            <s xml:id="echoid-s18835" xml:space="preserve">dall’altra, & </s>
            <s xml:id="echoid-s18836" xml:space="preserve">nel mezzo del loro
              <lb/>
            andare uerſo il Sole, & </s>
            <s xml:id="echoid-s18837" xml:space="preserve">del loro ritorno congiugnerſi con il Sole, ma quando erano dalle bande del Sole nelle loro ſtationi trouarſi diſcostißi-
              <lb/>
            mi dal Sole, & </s>
            <s xml:id="echoid-s18838" xml:space="preserve">però conchiuſero, che ſimil progreſſo, et regreſſo, ſi doueua ſaluare con l’Epiciclo, di modo, che lo cĕtro dello Epiciclo col Sole à
              <lb/>
            torno ſi moueſſe, & </s>
            <s xml:id="echoid-s18839" xml:space="preserve">che l’uno, & </s>
            <s xml:id="echoid-s18840" xml:space="preserve">l’altro pianeta tanto dal Sole s’allontanaſſe, quanto daua loro la longhezza dello Epiciclo, ma perche racco-
              <lb/>
            gliendo inſieme due contrarie, et grandißime distanze de i detti pianeti dal Sole, trouarono come nŏ in ogni luogo ſi ſeruaua la iſteſſa quantita,
              <lb/>
              <note position="left" xlink:label="note-0225-02" xlink:href="note-0225-02a" xml:space="preserve">20</note>
            & </s>
            <s xml:id="echoid-s18841" xml:space="preserve">che quella ſomma non poteua creſcere, ſe non per lo accoſtamento dello Epiciclo, ne ſcemare ſe non per lo apartamento di eſſo Epiciclo,
              <lb/>
            per loquale lo Epiciclo hora ſi accoſtaſſe hora ſi allontanaſſe dal centro del mondo, però à i due pianeti inferiori, & </s>
            <s xml:id="echoid-s18842" xml:space="preserve">lo Eccentrico, & </s>
            <s xml:id="echoid-s18843" xml:space="preserve">lo
              <lb/>
            Epiciclo ſono ſtati conceßi, con queſta conditione, che lo Eccentrico ſempre portaſſe à torno lo Epiciclo col Sole, & </s>
            <s xml:id="echoid-s18844" xml:space="preserve">quello iſteſſo fuſſe
              <lb/>
            mezzano mouimento del Sole & </s>
            <s xml:id="echoid-s18845" xml:space="preserve">del pianeta, & </s>
            <s xml:id="echoid-s18846" xml:space="preserve">lo Epiciclo portaſſe il pianeta di quà, & </s>
            <s xml:id="echoid-s18847" xml:space="preserve">di làrimouendo dal Sole, & </s>
            <s xml:id="echoid-s18848" xml:space="preserve">molto bene quadraſ-
              <lb/>
            fe, per ſaluare i regreßi, & </s>
            <s xml:id="echoid-s18849" xml:space="preserve">i mouimenti delle larghezze. </s>
            <s xml:id="echoid-s18850" xml:space="preserve">Hora per ſapere in che modo ſi habbia la quantita del mouimento. </s>
            <s xml:id="echoid-s18851" xml:space="preserve">Io dico che
              <lb/>
            oſſeruar biſogna il luogo del pianeta in nel punto del Zodiaco, & </s>
            <s xml:id="echoid-s18852" xml:space="preserve">aſpettar tanto, che di nouo il pianeta ritorni allo ſteſſo luogo,
              <lb/>
            con questa conditione, che egli ſia in egual diſtanza dal luogo di mezzo del Sole nell’uno, & </s>
            <s xml:id="echoid-s18853" xml:space="preserve">l’altro luogo, percioche allhora il piane-
              <lb/>
            ta hauerà fornito le intiere riuolutioni dell’uno, & </s>
            <s xml:id="echoid-s18854" xml:space="preserve">l’altro mouimento prima nello Eccentrico, perche il punto dello Epiciclo, ſerà ri-
              <lb/>
            tornato allo ſteſſo punto, poi nello Epiciclo, perche il pianeta alla diſtanza iſteſſa del Sole tornato, hauerà ancho ritrouato lo iſteſſo pun-
              <lb/>
            to dell’Epiciclo. </s>
            <s xml:id="echoid-s18855" xml:space="preserve">Per queſte oſſeruationi ſi hauer à il tempo traſcorſo, et il numero delle riuolutioni, imperoche ne i tre pianeti di ſopra quan-
              <lb/>
              <note position="left" xlink:label="note-0225-03" xlink:href="note-0225-03a" xml:space="preserve">30</note>
            te ſaranno ſtate le riuolutioni dello Epiciclo, & </s>
            <s xml:id="echoid-s18856" xml:space="preserve">le riuolutioni dello Eccentrico, ponendo inſieme il numero di queſte, et di quelle, tanto nello ſteſ
              <lb/>
            ſo ſeranno ſtate le riuolutioni del Sole, ma ne i due inferiori il numerro delle riuolutioni dello Eccentrico, è lo steſſo col numero delle riuolutio
              <lb/>
            ni dello Epiciclo conoſciuto che ſarà da noi appreſſo al uero il tempo d’una riuolutione. </s>
            <s xml:id="echoid-s18857" xml:space="preserve">La onde il numero delle riuolutioni moltiplicato per
              <lb/>
            360 produr à gradi, & </s>
            <s xml:id="echoid-s18858" xml:space="preserve">il numero de i gradi partito per lo numero de i giorni dello ſpacio delle oſſeruationi fatte ci darà la quantità del moui-
              <lb/>
            mento diurno. </s>
            <s xml:id="echoid-s18859" xml:space="preserve">Ma che ordine ne i progreßi, & </s>
            <s xml:id="echoid-s18860" xml:space="preserve">ne i ritorni & </s>
            <s xml:id="echoid-s18861" xml:space="preserve">quale neceßità loro ſia, dirò breuemente prima auuertendo, che la diuerſità ò
              <lb/>
            contrarietà di questa apparenza conuno di due modi ſi può ſaluare, ò che di dia al pianeta ſolo il deferente Eccĕtrico, ouero lo Epiciclo col de-
              <lb/>
            ferente Concentrico, cioè à quello modo, che in ciaſcuno de i tre pianeti di ſopra raccolti inſieme i mouimenti dello Epiciclo nel Concentrico, et
              <lb/>
            del pianeta nello Epiciclo ſieno eguali al mezzano mouimento del Sole, ma il centro dello Eccĕtrico ſecondo l’ordine de i ſegni ſi moua inſieme
              <lb/>
            col Sole, & </s>
            <s xml:id="echoid-s18862" xml:space="preserve">il pianeta con quella uelocita ſi moua con laquale ſi moue l’Epiciclo nel Concentrico in modo, che quella linea, che uiene dal Centro
              <lb/>
            ch’è paralella alla linea, che dal Centro dello Eccentrico, al Centro del pianeta è tirata, termini il mezzano mouimento del pianeta, & </s>
            <s xml:id="echoid-s18863" xml:space="preserve">questo
              <lb/>
              <note position="left" xlink:label="note-0225-04" xlink:href="note-0225-04a" xml:space="preserve">40</note>
            ne i tre ſoperiori ſi oſſerua, ma ne i due inferiori pongaſi il mouimento dello Epiciclo nel Concentrico, eguale al mezzano mouimento del Sole,
              <lb/>
            ma il mouimento del pianeta nello Epiciclo, & </s>
            <s xml:id="echoid-s18864" xml:space="preserve">il mouimento del Centtro dello Eccentrico ſia eguale alla ſomma raccolta dal mezzano mouimĕ
              <lb/>
            to del Sole, & </s>
            <s xml:id="echoid-s18865" xml:space="preserve">da quel mouimento, che fa il pianeta nello Epiciclo, & </s>
            <s xml:id="echoid-s18866" xml:space="preserve">il pianeta ſimilmente con la isteſſa uelocità ſi moua, con laquale ſi moue lo
              <lb/>
            Epiciclo nel Concentrico, con la iſteſſa conditione detta di ſopra, cioè in modo che quella linea, che uiene dal Cĕtro, che è paralella alla linea, che
              <lb/>
            dal Centro dello Eccentrico al centro del pianeta, è tirata, termini il mezzano mouimento del pianeta, & </s>
            <s xml:id="echoid-s18867" xml:space="preserve">ancho aggiuntaui queſta conditione
              <lb/>
            in quanto à tutti, che i diametri dello Eccentrico, & </s>
            <s xml:id="echoid-s18868" xml:space="preserve">del Concentrico ſiano proportionati al Semidiametro dello Epiciclo, & </s>
            <s xml:id="echoid-s18869" xml:space="preserve">all’uſcita del Cen
              <lb/>
            tro, & </s>
            <s xml:id="echoid-s18870" xml:space="preserve">coſi all’uno, & </s>
            <s xml:id="echoid-s18871" xml:space="preserve">all’altro modo nelle Stelle erranti ſi potria difendere la ragione del progreſſo, & </s>
            <s xml:id="echoid-s18872" xml:space="preserve">del regreſſo quanto alla diuerſità, & </s>
            <s xml:id="echoid-s18873" xml:space="preserve">
              <lb/>
            uarietà come per longa eſperienza compreſo hanno gli oſſeruatori delle Stelle, però ſu neceſſario dare la prima diuerſità allo Epiciclo, & </s>
            <s xml:id="echoid-s18874" xml:space="preserve">di-
              <lb/>
            fendere la ſeconda col deferente, ma quella ſola coſa era aſſai basteuole à far, che i deferenti di tutti i pianeti non faceſſero uno isteſſo Centro,
              <lb/>
            cioè la ſingularità del mouimento, cioè la ſuperiore, alla inferiore, & </s>
            <s xml:id="echoid-s18875" xml:space="preserve">perche questa communicatione non è stata auuertita ne i propi mouincn
              <lb/>
              <note position="left" xlink:label="note-0225-05" xlink:href="note-0225-05a" xml:space="preserve">50</note>
            ti de i pianeti, però non ci fu ordine di dar loro i Concentrici, ma accioche egli ſe intenda
              <lb/>
            bene à quale de i pianeti ſi dia il progreſſo, & </s>
            <s xml:id="echoid-s18876" xml:space="preserve">il regreſſo; </s>
            <s xml:id="echoid-s18877" xml:space="preserve">dirò, che imaginare douemo
              <lb/>
            due dritte linee, dal Centro tirate l’una che termine nelle parti Orientali dello Epiciclo,
              <lb/>
            l’altra nella parte Occidentale, à queſto modo quanto al mouimento del pianeta nello Epi
              <lb/>
              <figure xlink:label="fig-0225-01" xlink:href="fig-0225-01a" number="124">
                <description xml:id="echoid-description101" xml:space="preserve">h. k. l’Epiciclo’.
                  <lb/>
                b. il ſuo Centro.
                  <lb/>
                h.il ſuo giogo.
                  <lb/>
                n. l’@ ppoſto al giogo.
                  <lb/>
                c il Centro del Mondo.
                  <lb/>
                K. il punto della prima
                  <lb/>
                dimora.
                  <lb/>
                @ il punto della ſecon-
                  <lb/>
                da.
                  <lb/>
                h K o l’arco della ſe-
                  <lb/>
                conda.
                  <lb/>
                K. n. o l’arco del Re-
                  <lb/>
                greſſo
                  <lb/>
                h K l’arco della Di@
                  <lb/>
                rettione.</description>
                <variables xml:id="echoid-variables54" xml:space="preserve">H L A B K N O C</variables>
              </figure>
            ciclo, la Stella, che ander à per l’arco di ſopra nello Epiciclo, dico di ſopra alle due punti
              <lb/>
            del toccamento delle dette linee, ſi dirà andar inanzi, et far progreſſo, perche ella uà uer
              <lb/>
            ſo l’Oriente, ma nello arco inferiore ſi dirà retrograda, perche ritornerà mouendoſi à-
              <lb/>
            la contraria parte, ma ſtando ne i punti predetti, ſi dirà, che ella dimor, ò stia, perche
              <lb/>
            nel punto Orientale ſi farà rettrograda di dritta, & </s>
            <s xml:id="echoid-s18878" xml:space="preserve">nel punto Occidentale ſi farà drit-
              <lb/>
            ta di retrograda, benche nel Sole, & </s>
            <s xml:id="echoid-s18879" xml:space="preserve">nella Luna queſte coſe per lo contrario conſiderate
              <lb/>
              <note position="left" xlink:label="note-0225-06" xlink:href="note-0225-06a" xml:space="preserve">60</note>
            ſono, laqual ragione d’intorno al progreſſo, & </s>
            <s xml:id="echoid-s18880" xml:space="preserve">al regreſſo ſaria à baſtanza, ſe egli auue
              <lb/>
            niſſe, che il pianeta non ſi trouaſſe con altro mouimento, che col mouimento dello Epici-
              <lb/>
            clo, ma perche mentre il pianeta nello Epiciclo ſi riuolge lo Epiciclo ancho dello Eccĕtri
              <lb/>
            co è portato, però che appreſſo i punti detti del toccamento il pianeta benche quanto al
              <lb/>
            riuolgimento dello Epiciclo ſia in dimora, niente di meno dallo Eccentrico è portato uer-
              <lb/>
            ſo l’Oriente, & </s>
            <s xml:id="echoid-s18881" xml:space="preserve">coſi anchora è diretto, & </s>
            <s xml:id="echoid-s18882" xml:space="preserve">però è neceſſario, che i punti delle dimore ſia-
              <lb/>
            no alquanto inferiori à quelli punti, che nel toccamento fanno le predette linee; </s>
            <s xml:id="echoid-s18883" xml:space="preserve">che dal
              <lb/>
            Centro hauemo detto partirſi, & </s>
            <s xml:id="echoid-s18884" xml:space="preserve">coſi quelle linee non toccando, ma tagliando, & </s>
            <s xml:id="echoid-s18885" xml:space="preserve">parten
              <lb/>
            do lo Epiciclo, fanno ne i tagli i punti della dimora, & </s>
            <s xml:id="echoid-s18886" xml:space="preserve">peròè neceſſario, che quei punti
              <lb/>
            ſiano in quella parte della circŏferenza dello Epiciclo, doue il mouimento retrogrado del
              <lb/>
            pianeta dello Epiciclo coſi contraſta col mouimĕto del deferĕte, che quãto il pianeta, è por
              <lb/>
              <note position="left" xlink:label="note-0225-07" xlink:href="note-0225-07a" xml:space="preserve">70</note>
            tato all’occaſo dallo Epiciclo tanto l’ Epiciclo ſia ritornato dal deferente uerſo Leuante, & </s>
            <s xml:id="echoid-s18887" xml:space="preserve">à questo modo il pianeta dieguali ma contrari mo
              <lb/>
            uimenti portato pare, che egli dimori, & </s>
            <s xml:id="echoid-s18888" xml:space="preserve">ſi ſtia. </s>
            <s xml:id="echoid-s18889" xml:space="preserve">Et però il pianeta nel punto dello ſtato Orientale, che è detto prima dimora comincia à
              <lb/>
            ritornare: </s>
            <s xml:id="echoid-s18890" xml:space="preserve">imperoche iui il mouimento del pianeta nello Epiciclo comincia à ſuperare il mouimento dello Epiciclo nel deferente, ma nel pun-
              <lb/>
            to della dimora Occidentale, che ſi chiama ſeconda ſtatione il pianeta ritorna allo andar auanti, & </s>
            <s xml:id="echoid-s18891" xml:space="preserve">al progreſſo, percioche ſi rallenta nello Epi
              <lb/>
            c
              <unsure/>
            iclo il mouimento del pianeta, & </s>
            <s xml:id="echoid-s18892" xml:space="preserve">queste coſe da gli eſſempi ſoprapoſti ci ſono manifeste.</s>
            <s xml:id="echoid-s18893" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>