Vitruvius, I Dieci Libri dell' Architettvra di M. Vitrvvio, 1556

List of thumbnails

< >
31
31 (25)
32
32 (26)
33
33 (27)
34
34 (28)
35
35 (29)
36
36 (30)
37
37 (31)
38
38 (32)
39
39 (33)
40
40 (34)
< >
page |< < (58) of 325 > >|
    <echo version="1.0RC">
      <text xml:lang="it" type="free">
        <div xml:id="echoid-div174" type="section" level="1" n="27">
          <p style="it">
            <s xml:id="echoid-s6090" xml:space="preserve">
              <pb o="58" file="0064" n="66" rhead="LIBRO"/>
            due. </s>
            <s xml:id="echoid-s6091" xml:space="preserve">Se contenera il terzo oltra il tutto, ſer à la proportione ſeſquiterza nominata. </s>
            <s xml:id="echoid-s6092" xml:space="preserve">come quattro à tre, otto à ſei. </s>
            <s xml:id="echoid-s6093" xml:space="preserve">Se un quarto la ſesqui-
              <lb/>
            quarta, come dieci à otto. </s>
            <s xml:id="echoid-s6094" xml:space="preserve">& </s>
            <s xml:id="echoid-s6095" xml:space="preserve">coſi in infinito.</s>
            <s xml:id="echoid-s6096" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s6097" xml:space="preserve">Ma ſe uorremo ſapere le ſpecie della ſoprapartiente, diremo in questo modo. </s>
            <s xml:id="echoid-s6098" xml:space="preserve">che il piu contiene il meno una uolta è due parti d’eſſo, ouero
              <lb/>
            tre, ò quattro, & </s>
            <s xml:id="echoid-s6099" xml:space="preserve">coſi in infinito. </s>
            <s xml:id="echoid-s6100" xml:space="preserve">Se contenera di piu del meno due parti, dirasſi ſoprabipartiente. </s>
            <s xml:id="echoid-s6101" xml:space="preserve">come cinque, à tre, che è un tanto,
              <lb/>
            & </s>
            <s xml:id="echoid-s6102" xml:space="preserve">due terzi, ſe tre parti chiamerasſi ſopratripartiente, come otto à cinque, che è un tanto, è tre quinti. </s>
            <s xml:id="echoid-s6103" xml:space="preserve">ſe quattro parti, chia merasſi
              <lb/>
            ſopra quadripartiente, come noue à cinque, che è un tanto ė quattro quinti. </s>
            <s xml:id="echoid-s6104" xml:space="preserve">& </s>
            <s xml:id="echoid-s6105" xml:space="preserve">coſi nel reſtante, & </s>
            <s xml:id="echoid-s6106" xml:space="preserve">queſte ſono le ſpecie della ſemplice
              <lb/>
            proportione, della maggior diſaguaglianza.</s>
            <s xml:id="echoid-s6107" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s6108" xml:space="preserve">Le compoſte ueramente ſono due, et chiamanſi cõposte, perche fatte ſono da due ſemplici, la prima è detta moltiplice ſopraparticolare. </s>
            <s xml:id="echoid-s6109" xml:space="preserve">la ſeconda
              <lb/>
            moltiplice ſoprapartiente, & </s>
            <s xml:id="echoid-s6110" xml:space="preserve">ſono coſi dette, perche rittengono la natura di quelle proportioni delle quali compoſte ſono, inquanto adunque
              <lb/>
            la prima è detta moltiplice, ne ſegue, che il maggiore contegna il minore piu uolte, ma inquanto é detta ſopraparticolare, ne ſegue, che il mag-
              <lb/>
              <note position="left" xlink:label="note-0064-01" xlink:href="note-0064-01a" xml:space="preserve">10</note>
            giore contenera il minore piu uolte con qualche parte di eſſo. </s>
            <s xml:id="echoid-s6111" xml:space="preserve">& </s>
            <s xml:id="echoid-s6112" xml:space="preserve">però la moltiplice ſopraparticolare comparando il piu al meno, ritroua, che
              <lb/>
            il piu contiene il meno piu uolte, & </s>
            <s xml:id="echoid-s6113" xml:space="preserve">qualche parte di eſſo, ſe due ſiate & </s>
            <s xml:id="echoid-s6114" xml:space="preserve">la metà ſer à proportione dupla ſeſquialtera, come cinque à due ſe
              <lb/>
            tre fiate, & </s>
            <s xml:id="echoid-s6115" xml:space="preserve">la meta ſerà tripla ſeſquialtera, & </s>
            <s xml:id="echoid-s6116" xml:space="preserve">coſi in infinito. </s>
            <s xml:id="echoid-s6117" xml:space="preserve">Se due ſiate & </s>
            <s xml:id="echoid-s6118" xml:space="preserve">un terzo come ſette à tre ſer à doppia ſeſquiterza. </s>
            <s xml:id="echoid-s6119" xml:space="preserve">Se tre
              <lb/>
            fiate, & </s>
            <s xml:id="echoid-s6120" xml:space="preserve">unterzo, ſer à tripla ſesquiterza, & </s>
            <s xml:id="echoid-s6121" xml:space="preserve">coſi procedendo nell’ altre ſi può andare in infinito. </s>
            <s xml:id="echoid-s6122" xml:space="preserve">Parimente la moltiplice ſoprapartiente
              <lb/>
            proportione inquanto moltiplice il piu contenera il meno piu uolte, & </s>
            <s xml:id="echoid-s6123" xml:space="preserve">inquanto ſoprapartiente il piu contenera del meno alquante parti, & </s>
            <s xml:id="echoid-s6124" xml:space="preserve">
              <lb/>
            ſe il piu contenera il meno due fiate, & </s>
            <s xml:id="echoid-s6125" xml:space="preserve">due parti ſer à doppia ſopr abipartiente, come dodici à cinque, ſe due fiate è tre parti, ſer à doppia ſo-
              <lb/>
            pratripartiente, come tredici à cinque, & </s>
            <s xml:id="echoid-s6126" xml:space="preserve">coſi in infinito, come ſe il piu conteneſſe il meno tre fiate, & </s>
            <s xml:id="echoid-s6127" xml:space="preserve">due parti ſarebbe tripla ſoprabi-
              <lb/>
            partiente, come dieciſette à cinque. </s>
            <s xml:id="echoid-s6128" xml:space="preserve">Se tre fiate, & </s>
            <s xml:id="echoid-s6129" xml:space="preserve">tre parti, ſarebbe tripla ſopratripartiente come dieciotto à cinque. </s>
            <s xml:id="echoid-s6130" xml:space="preserve">& </s>
            <s xml:id="echoid-s6131" xml:space="preserve">coſi ſeguendo
              <lb/>
            nell’altre.</s>
            <s xml:id="echoid-s6132" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s6133" xml:space="preserve">Et perche per un riſpetto ſi conoſce l’altro, però dalle ſpecie delle proportioni della diſaguaglianza del maggiore al minore, ſe hanno le ſpecie
              <lb/>
            della diſaguaglianza del minore al maggiore, ne altra differenza é, che ſi come nella prima ſi cominciaua dal piu & </s>
            <s xml:id="echoid-s6134" xml:space="preserve">ſi terminaua nel meno,
              <lb/>
              <note position="left" xlink:label="note-0064-02" xlink:href="note-0064-02a" xml:space="preserve">20</note>
            coſi in queſta s’ineomincia dal meno, & </s>
            <s xml:id="echoid-s6135" xml:space="preserve">ſi termina nel piu. </s>
            <s xml:id="echoid-s6136" xml:space="preserve">& </s>
            <s xml:id="echoid-s6137" xml:space="preserve">ſi muta quella particola ſopra, nella particola ſotto, & </s>
            <s xml:id="echoid-s6138" xml:space="preserve">però ſi dice ſottomol
              <lb/>
            tiplice, ſottodoppia, ſotto ſesquialtera, ſottoſesquiterza, & </s>
            <s xml:id="echoid-s6139" xml:space="preserve">il reſto ad uno iſteſſo modo.</s>
            <s xml:id="echoid-s6140" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s6141" xml:space="preserve">Deuesſi auuertire, che à due modi una quantità ė parte d’unaltra. </s>
            <s xml:id="echoid-s6142" xml:space="preserve">Il primo ė quando la parte d’una quantità preſa ſecondo alcune fiate apunto,
              <lb/>
            entra nel tutto di punto. </s>
            <s xml:id="echoid-s6143" xml:space="preserve">cio è quando il partitore entra apunto nella coſa partita, & </s>
            <s xml:id="echoid-s6144" xml:space="preserve">niente gli auanza. </s>
            <s xml:id="echoid-s6145" xml:space="preserve">queſta noi chiamaremo parte molti-
              <lb/>
            plicante, & </s>
            <s xml:id="echoid-s6146" xml:space="preserve">questa è la uera ſignificatione, & </s>
            <s xml:id="echoid-s6147" xml:space="preserve">propia intelligenza di questo nome, che parte ſi chiama.</s>
            <s xml:id="echoid-s6148" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s6149" xml:space="preserve">Diceſi in altro modo parte quella, che preſa quante fiate uuoi, mai non ti rende l’intiero, & </s>
            <s xml:id="echoid-s6150" xml:space="preserve">ſi chiama parte aggiunta, imperoehe aggiunta con
              <lb/>
            un’ altra parte fa il tutto, l’eſſempio della parte moltiplicante, è come due à ſei, imperoche due miſura ſei, & </s>
            <s xml:id="echoid-s6151" xml:space="preserve">in eſſo entra tante fiate apun-
              <lb/>
            to, come tre in noue, otto in trentadue. </s>
            <s xml:id="echoid-s6152" xml:space="preserve">l’eſſempio della parte aggiunta è come due nel cinque, perche due preſo due fiate non fa cinque, ma
              <lb/>
            meno. </s>
            <s xml:id="echoid-s6153" xml:space="preserve">& </s>
            <s xml:id="echoid-s6154" xml:space="preserve">preſo tre non ſa cinque ma piu.</s>
            <s xml:id="echoid-s6155" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s6156" xml:space="preserve">Quando adunque s’è detto che nella proportione ſemplice ſopra particolare il piu contiene il meno una fiata, & </s>
            <s xml:id="echoid-s6157" xml:space="preserve">ancho qualche parte del meno
              <lb/>
              <note position="left" xlink:label="note-0064-03" xlink:href="note-0064-03a" xml:space="preserve">30</note>
            intendeſi, che quella tal parte ſia parte moltiplicante, ſimilmente quando s’ė detto, che nella proportione ſoprapartiente il piu contiene il
              <lb/>
            meno una fiata, & </s>
            <s xml:id="echoid-s6158" xml:space="preserve">di piu alquante parte di eſſo, s’intende delle parti aggiunte, compoſte però di parti moltiplicanti, come cinque contiene
              <lb/>
            tre, & </s>
            <s xml:id="echoid-s6159" xml:space="preserve">due parti del tre, lequali preſi quante fiate uuoi non fanno tre. </s>
            <s xml:id="echoid-s6160" xml:space="preserve">perche due preſo una fiata, non fa tre, preſo due fiate paſſa tre. </s>
            <s xml:id="echoid-s6161" xml:space="preserve">& </s>
            <s xml:id="echoid-s6162" xml:space="preserve">
              <lb/>
            però due è parte aggiunta di tre, laqual parte però è fatta di parti, & </s>
            <s xml:id="echoid-s6163" xml:space="preserve">che preſe alquante fiate fan due, perche due è fatto di due unità. </s>
            <s xml:id="echoid-s6164" xml:space="preserve">il ſi-
              <lb/>
            mile intender ai nelle compoſte proportioni, perche ſerbano la natura delle componenti, & </s>
            <s xml:id="echoid-s6165" xml:space="preserve">tanto ſia detto della ſignificatione. </s>
            <s xml:id="echoid-s6166" xml:space="preserve">è ancho della
              <lb/>
            diffinitione, & </s>
            <s xml:id="echoid-s6167" xml:space="preserve">diuiſione delle proportioni. </s>
            <s xml:id="echoid-s6168" xml:space="preserve">Hora ſi dir à cio, che ne naſce. </s>
            <s xml:id="echoid-s6169" xml:space="preserve">Dalle proportioni naſcono le comparationi, & </s>
            <s xml:id="echoid-s6170" xml:space="preserve">i riſpetti che han-
              <lb/>
            no tra ſe, cio ė quando una proportione ė comparata con l’altra, & </s>
            <s xml:id="echoid-s6171" xml:space="preserve">queſte ſimiglianze di proportioni ſi chiamano proportionalità, & </s>
            <s xml:id="echoid-s6172" xml:space="preserve">ſi
              <lb/>
            come la proportione è riſpetto, & </s>
            <s xml:id="echoid-s6173" xml:space="preserve">conuenienza di due quantità compreſe come due estremi ſotto un’iſteſſo genere, coſi la proportionalità
              <lb/>
            ė riſpetto, ė comparatione non d’una quantità all’altra, ma d’una proportione all’altra, come ſarebbe à dire la proportione che ė fra quat-
              <lb/>
            tro ė dua, eſſer ſimile alla proportione, che fra otto, & </s>
            <s xml:id="echoid-s6174" xml:space="preserve">quattro, imperoche & </s>
            <s xml:id="echoid-s6175" xml:space="preserve">l’una, & </s>
            <s xml:id="echoid-s6176" xml:space="preserve">laltra ė doppia. </s>
            <s xml:id="echoid-s6177" xml:space="preserve">& </s>
            <s xml:id="echoid-s6178" xml:space="preserve">però tutte le doppie, tutte le
              <lb/>
              <note position="left" xlink:label="note-0064-04" xlink:href="note-0064-04a" xml:space="preserve">40</note>
            triple, ò quadruple, ò ſiano d’ uno isteſſo genere come tralinea, & </s>
            <s xml:id="echoid-s6179" xml:space="preserve">linea, tra corpo & </s>
            <s xml:id="echoid-s6180" xml:space="preserve">corpo. </s>
            <s xml:id="echoid-s6181" xml:space="preserve">ò ſiano di diuerſi generi, come è tra linea, & </s>
            <s xml:id="echoid-s6182" xml:space="preserve">
              <lb/>
            corpo, & </s>
            <s xml:id="echoid-s6183" xml:space="preserve">tra corpo é ſpatio. </s>
            <s xml:id="echoid-s6184" xml:space="preserve">tra ſpatio & </s>
            <s xml:id="echoid-s6185" xml:space="preserve">tempo ſono proportionali, & </s>
            <s xml:id="echoid-s6186" xml:space="preserve">conſequentemente ſimili, & </s>
            <s xml:id="echoid-s6187" xml:space="preserve">doue ė proportionalità iui ė neceſſa-
              <lb/>
            rio che ſia proportione, imperoche proportionalità non è altro che conueneuolezza di proportione. </s>
            <s xml:id="echoid-s6188" xml:space="preserve">ma non per lo contrario, perche fra
              <lb/>
            quattro & </s>
            <s xml:id="echoid-s6189" xml:space="preserve">dua ė proportione, ma non proportionalità. </s>
            <s xml:id="echoid-s6190" xml:space="preserve">in queste proportionalità conſisteno tutti i ſecreti dell’ arte. </s>
            <s xml:id="echoid-s6191" xml:space="preserve">ma perche bene s’intenda
              <lb/>
            quanto ſcoprir uolemo, ſi dira prima. </s>
            <s xml:id="echoid-s6192" xml:space="preserve">come ſi conoſcono i denominatori delle proportioni. </s>
            <s xml:id="echoid-s6193" xml:space="preserve">come ſi aggiugne, come ſi leua dalle proportio-
              <lb/>
            ni, come ſono moltiplicate, & </s>
            <s xml:id="echoid-s6194" xml:space="preserve">partite. </s>
            <s xml:id="echoid-s6195" xml:space="preserve">& </s>
            <s xml:id="echoid-s6196" xml:space="preserve">poi ſi dira delle proportionnalità, è de i termini ſuoi coſe, che in quantità poche ſeranno ma in
              <lb/>
            uirtu tali, & </s>
            <s xml:id="echoid-s6197" xml:space="preserve">tante che ogni ſtudioſo d’ogni facultà ſe ne potra ſeruire.</s>
            <s xml:id="echoid-s6198" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s6199" xml:space="preserve">Per ſapere adunque ritrouare i denominatori delle proportioni, ilche gioua, à conoſcere qual proportione ſia maggiore, qual minore, perche nelle
              <lb/>
            fabriche quelle hanno piu del grande, che ſono di maggior proportione, è da conſiderare, che quando la proportione è di aggudgliamza, cioė
              <lb/>
            quando ſono tante unit à in un numero, quante in un’altro, non è neceſſario affaticarſi in ritrouar i denominatori, perche (come ho detto)
              <lb/>
              <note position="left" xlink:label="note-0064-05" xlink:href="note-0064-05a" xml:space="preserve">50</note>
            non ſi trouano piu ſpecie di quella, perehe tra le coſe pari non è maggioranza, ne minoranza. </s>
            <s xml:id="echoid-s6200" xml:space="preserve">Ma doue è proportione di diſaguaglianza,
              <lb/>
            bene è neceſſario il ſaperli, per poter conoſcer la diuerſità delle ſpecie loro.</s>
            <s xml:id="echoid-s6201" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s6202" xml:space="preserve">Breue adunque, & </s>
            <s xml:id="echoid-s6203" xml:space="preserve">iſpedita regola di ritrouar i numeri da i quali chiamate, & </s>
            <s xml:id="echoid-s6204" xml:space="preserve">nominate ſono le proportioni, ė partire l’uno eſtremo della pro-
              <lb/>
            portione per altro. </s>
            <s xml:id="echoid-s6205" xml:space="preserve">imperoche quello che ne adiuiene per tal partimento, e ſempre il denominatore, cio è il numero dalqual e denominata la
              <lb/>
            proportione. </s>
            <s xml:id="echoid-s6206" xml:space="preserve">Partire altro non ė che uedere quante fiate un numero entra nell´altro, & </s>
            <s xml:id="echoid-s6207" xml:space="preserve">quello, che gli auanza. </s>
            <s xml:id="echoid-s6208" xml:space="preserve">La onde è raggioneuole che
              <lb/>
            dal partimento, & </s>
            <s xml:id="echoid-s6209" xml:space="preserve">dall’ auuenimento ſi conoſca il nome di ciaſcuna proportione.</s>
            <s xml:id="echoid-s6210" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s6211" xml:space="preserve">Se adunque ſi uuol ſapere come ſi chiama la proportione che è tra quattro & </s>
            <s xml:id="echoid-s6212" xml:space="preserve">otto, partir conuienſi otto per quattro, cio ė uedere quante fiate
              <lb/>
            quattro entra in otto. </s>
            <s xml:id="echoid-s6213" xml:space="preserve">& </s>
            <s xml:id="echoid-s6214" xml:space="preserve">ritrouerai che quattro entra in otto due fiate apunto. </s>
            <s xml:id="echoid-s6215" xml:space="preserve">da due adunque chiamerai, & </s>
            <s xml:id="echoid-s6216" xml:space="preserve">denominarai la proportione,
              <lb/>
            che e tra quattro, & </s>
            <s xml:id="echoid-s6217" xml:space="preserve">otto. </s>
            <s xml:id="echoid-s6218" xml:space="preserve">& </s>
            <s xml:id="echoid-s6219" xml:space="preserve">dirai la proportione eſſer doppia.</s>
            <s xml:id="echoid-s6220" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s6221" xml:space="preserve">Eccone un’altro eſſempio ſe deſideri ſapere, che proportione ſia tra cinque e ſedici, parti ſedici per cinque, & </s>
            <s xml:id="echoid-s6222" xml:space="preserve">ritrouerai chel cinque entra nel
              <lb/>
              <note position="left" xlink:label="note-0064-06" xlink:href="note-0064-06a" xml:space="preserve">60</note>
            ſedici tre fiate. </s>
            <s xml:id="echoid-s6223" xml:space="preserve">& </s>
            <s xml:id="echoid-s6224" xml:space="preserve">però dirai che ė proportion tripla, & </s>
            <s xml:id="echoid-s6225" xml:space="preserve">perche gli auanza uno che è la quinta parte di cinque. </s>
            <s xml:id="echoid-s6226" xml:space="preserve">però dirai che ė proportion
              <lb/>
            tripla ſesquiquinta. </s>
            <s xml:id="echoid-s6227" xml:space="preserve">& </s>
            <s xml:id="echoid-s6228" xml:space="preserve">conoſcer ai queſta proportione eſſer compoſta, cio e moltiplice ſopraparticolare, & </s>
            <s xml:id="echoid-s6229" xml:space="preserve">coſi nel reſtante ti eſſerciterai.</s>
            <s xml:id="echoid-s6230" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s6231" xml:space="preserve">Dalla ſopradetta cognitione ſi può ſapere quale proportione ſia da eſſer poſta tra le maggiori, & </s>
            <s xml:id="echoid-s6232" xml:space="preserve">quale tra le minori, & </s>
            <s xml:id="echoid-s6233" xml:space="preserve">quale tra l’eguali & </s>
            <s xml:id="echoid-s6234" xml:space="preserve">
              <lb/>
            ſimili proportioni. </s>
            <s xml:id="echoid-s6235" xml:space="preserve">imperoche eguali e ſimili ſono quelle, che hanno le iſteſſe denominationi. </s>
            <s xml:id="echoid-s6236" xml:space="preserve">ma ſono maggiori quelle, che hanno denomination
              <lb/>
            maggiore, & </s>
            <s xml:id="echoid-s6237" xml:space="preserve">minori quelle che l’hanno minore, perche la denominatione e detta tanto eſſer grande, quanto il numero, che la dinota. </s>
            <s xml:id="echoid-s6238" xml:space="preserve">& </s>
            <s xml:id="echoid-s6239" xml:space="preserve">
              <lb/>
            però la quadrupla e maggiore della tripla, perche di quella il numero, che la dinota e quattro, di queſta, tre. </s>
            <s xml:id="echoid-s6240" xml:space="preserve">& </s>
            <s xml:id="echoid-s6241" xml:space="preserve">coſi la ſesquialtera e mag-
              <lb/>
            giore della ſesquiterza, perche la ſesquialtera e nommata dalla meta, & </s>
            <s xml:id="echoid-s6242" xml:space="preserve">la ſesquiterza da un terzo, & </s>
            <s xml:id="echoid-s6243" xml:space="preserve">ne i rotti quanto e maggiore il de-
              <lb/>
            nominatore del rotto, tanto e minore il rotto, & </s>
            <s xml:id="echoid-s6244" xml:space="preserve">quanto e minore il denominatore, tanto e maggiore il rotto, & </s>
            <s xml:id="echoid-s6245" xml:space="preserve">peròun quarto e meno d’un
              <lb/>
            terzo, perche quattro e maggiore di tre. </s>
            <s xml:id="echoid-s6246" xml:space="preserve">& </s>
            <s xml:id="echoid-s6247" xml:space="preserve">però una tripla ſesquialtera e maggiore, che una tripla ſesquiterza. </s>
            <s xml:id="echoid-s6248" xml:space="preserve">ma una tripla ſesquiterza
              <unsure/>
              <lb/>
            e maggiore che una doppia ſesquialtera. </s>
            <s xml:id="echoid-s6249" xml:space="preserve">& </s>
            <s xml:id="echoid-s6250" xml:space="preserve">queſto non per la denominatione del rotto, ma per ragione del numero intiero.</s>
            <s xml:id="echoid-s6251" xml:space="preserve"/>
          </p>
          <note position="left" xml:space="preserve">70</note>
          <p style="it">
            <s xml:id="echoid-s6252" xml:space="preserve">Non è facile a dichiarire la utilità che ne uiene all’ Architetto della cognitione delle ſopra dette coſe, imperoche infinite ſono le occorrenze
              <lb/>
            di ſeruirſi piu d’una, che d’un´ altra proportione, come nella diuiſione de i corpi delle fabriche, ne gli Atrij, Tablini, Sale, Loggie, & </s>
            <s xml:id="echoid-s6253" xml:space="preserve">al-
              <lb/>
            tre ſtanze.</s>
            <s xml:id="echoid-s6254" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s6255" xml:space="preserve">Nelle ſoprapartienti proportioni ſimilmente quella è maggiore, che da numero maggiore è denominata, & </s>
            <s xml:id="echoid-s6256" xml:space="preserve">perche queſto s’intendi bene, io dico.</s>
            <s xml:id="echoid-s6257" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>